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Abstract
It is somewhat of an embarrassment to semantics and pragmatics alike that there is no
consensus on the meaning of number words like five. According to the orthodox neo-
Gricean view, five in fact means ‘five or more’. According to the naı̈ve view, which in
recent years has begun to regain ground, five simply means ‘five’. All things considered,
the naı̈ve view seems to be the most promising, but still the orthodox neo-Gricean
position has its merits as well.

Like so many discussions about issues involving conversational implicature, the de-
bate about number words suffers from a methodological problem. It is that observations
about the interpretation of sentences are used for pinpointing lexical meanings without
an explicit framework for dealing with the combinatorics of meaning. It will be evident,
however, that a great deal is going to depend on this. To illustrate this point, I adopt
a type-shifting framework within which theories of number terms can be compared.
Against this background, I argue for a version of the naı̈ve view according to which the
primary meaning of five is that of an ‘exact’ quantifier, from which an ‘exact’ predicate
meaning and an ‘at least’ quantifier meaning are derivable by standard type-shifting
rules.

1 Introduction

This paper is concerned with the meaning and use of the word ‘five’. I trust
that most of my observations, claims, and mistakes pertaining to this word will
extend to the other numerals.

In the last few decades, considerable quantities of ink have been spilt on
the semantics and pragmatics of number words. To explain what is at issue,
consider the following examples:

(1) a. You must take five cards.
b. You may take five cards.

In: Svetlana Vogeleer and Liliane Tasmowski (eds.), Non-definiteness and plurality. Benjamins,
Amsterdam/Philadelphia. Pp. 311-329.
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On the face of it, (1a) would appear to be ambiguous between an exact reading
(‘you must take five cards, and no more’) and an ‘at least’ reading (‘you must
take at least five cards’), and similarly, (1b) seems to allow for an exact as well
as an ‘at most’ construal (‘you may take five cards, but neither more nor less’
vs. ‘you may take at most five cards’). The problem is how all these various
readings are to be accounted for, and in particular, how the lexical meaning of
‘five’ contributes to the interpretation of sentences in which it occurs.

On the orthodox neo-Gricean view, the lexical meaning of ‘five’ is ‘at least
five’, which, depending on the context, may be strengthened by way of a scalar
implicature (Horn 1972, 1989, Levinson 2000, and many others). There are
serious problems with this theory, which led even its inventor to abandon it
after 20 years (Horn 1992), but it is still endorsed by Levinson (2000) and Winter
(2001), among others. Other researchers have been more impressed with the
evidence against the neo-Gricean account, and have generally adopted the
common-sense view that ‘five’ means ‘exactly five’ (e.g. Horn 1992, Geurts
1998b, Breheny 2005). A somewhat special position is taken by Carston (1998),
who maintains that the lexical meaning of number words is strictly neutral
between the various construals distinguished above.

I believe that the debate about the meaning and use of numerals has been
marred by two rather fundamental problems. First, arguments for or against
this or that analysis of number words have usually been deployed in the absence
of an explicit framework of compositional semantics. It is evident, however,
that a great deal will hinge on this. To illustrate the extent of the problem, it is a
well-worn observation in semantics (though not in pragmatics) that postulating
an exact lexical meaning for ‘five’ does not necessarily imply that a sentence
in which the numeral occurs will have an ‘exactly five’ interpretation (see
Section 3 for further discussion of this point). Consequently, the observation
that, for example, the sentence in (1a) is, in some cases at least, paraphraseable
with ‘at least five’ does not entail that, on such occasions, the word ‘five’ has an
‘at least’ meaning. This conclusion may (or may not) be valid once it has been
made explicit how the meaning of ‘five’ combines with that of ‘cards’, and so
on; but without a theory of meaning composition it is just a leap of faith.

The second problem is one of presupposition failure. Most of the extant
studies on numerals purport to inquire into the meaning of ‘five’ and its kin
(Bultinck 2002 is an honourable exception). But surely it is a mistake to ask for
the unique meaning of ‘five’, considering that this word is used in very different
ways:

(2) arithmetical : Five is the fourth Fibonacci number.
quantifying : Five ducks entered the lobby.
predicative : These are five buckets.

adjectival : the five girls
measure : five pounds of buckwheat

label : Chanel number five

Although it may be that the same lexical meaning of ‘five’ is involved in its
predicative and adjectival uses, for example, it is most unlikely that a single
lexical meaning can account for all the uses illustrated here. On the other
hand, it is equally unlikely that the various uses of ‘five’ are entirely unrelated.
In short, it would seem that, like the vast majority of lexical items, ‘five’ is
polysemous, i.e. it has several related senses.

I don’t claim that the observations in (2)prove ‘five’ to be polysemous. I
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wouldn’t know how to prove so strong a proposition—be it for ‘five’ or for any
other word. My claim is just that, if it is accepted that polysemy is prevalent,
there is no reason why we should expect number words to be exceptional, and
the data in (2) suggest that, indeed, they are not.

If ‘five’ has several senses, it may be that some of them are exact, while others
are not. I will argue that this is not just a logical possibility, and that indeed
‘five’ has an exact meaning in some of its uses, whilst on other occasions it
has an ‘at least’ meaning. In a way, this is to say that mine is a halfway house
between the scalar and non-scalar accounts of number terms. However, my
position is actually closer to the non-Gricean view, because, on the one hand,
I will argue that the primary sense of ‘five’ is exact, while the ‘at least’ sense
is merely derived, and on the other hand, pragmatic inferences will not play a
central part in my story.

2 Type shifting and polysemy

The upshot of the foregoing observations is that, if we want to make an informed
choice between alternative theories of ‘five’, we need a general framework of
compositional semantics that allows us to formulate such theories without
being biased towards one or the other. Furthermore, we need the conceptual
wherewithal for accommodating polysemy: it must be possible to assign ‘five’
several senses and make explicit the semantic relations that hold them together.
Such a framework is available and has been widely used in the past decades
(the key reference is Partee 1986). In this section I will outline the main ideas.

Let us start by comparing the occurrences of the noun ‘visitors’ in the follow-
ing sentences:

(3) a. Visitors complained about the poor service.
b. They are visitors.

In (3a), the bare plural ‘visitors’ occurs in argument position, and therefore has
existential force. The resulting reading may be represented as follows:

(4) ∃x[visitor(x) ∧ complain(x)]

This is to be read as stating that there is a group of complaining visitors.
That is to say, the first-order variables in our semantic representations range
over groups of individuals; individuals will be treated as singleton groups.
Whereas in (3a) the bare plural acts as an existential quantifier, in (3b) it serves
the function of a predicate, and the latter sentence is analysed simply as:

(5) visitor(they)

Hence, depending on the grammatical environment in which it occurs, the
noun ‘visitors’ may be construed either as a predicate or a quantifier, but we
wouldn’t want to conclude from this that the noun is homonymous, for intui-
tively its two senses are related. This intuition can be given its due by adopting
meaning transformations, or type-shifting rules, as they are usually called. To
explain how such rules work, suppose that the primary sense of ‘visitor’ is
predicative; more precisely, let it be the property of being a group of visitors,
i.e. λx[visitor(x)]. There is a type-shifting rule, which I will call ‘Existential
Closure’, that maps this into a quantifier meaning, as follows:
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Existential Closure
λx[visitor(x)]{ λP∃x[visitor(x) ∧ P(x)]

The quantifier λP∃x[visitor(x) ∧ P(x)] combines with a predicate to form a
proposition. For example, if it is combined with the predicate λx[complain(x)],
the result is (4).

Adopting Existential Closure, we can say that ‘visitors’ is polysemous be-
tween a predicative and a quantifier sense, and that the latter is derived from
the former. However, from a logical point of view, we may just as well start with
the quantifier sense, and adopt a type-shifting rule that transforms quantifiers
into predicates, as follows:

Quantifier Lowering
λP∃x[visitor(x) ∧ P(x)]{ λx[visitor(x)]

Assuming Quantifier Lowering, one could claim that the quantifier sense of
‘visitors’ is primary, while the predicate sense is derived.

Note that in this example, applying Quantifier Lowering and Existential
Closure consecutively, in either order, yields an output that is identical to
the initial input. However, while Quantifier Lowering always ‘undoes’ the
effect of Existential Closure, the converse is not generally true: if we apply
Quantifier Lowering to a quantifier Q so as to obtain a predicate P, and then
apply Existential Closure to P, the result may but need not be Q.

Existential Closure and Quantifier Lowering were among the type-shifting
rules studied by Partee (1986), and I will follow her in assuming that both
rules are available in natural language. That is to say, I will suppose without
argument that Existential Closure and Quantifier Lowering are equally well
motivated on independent grounds, and that it speaks neither for nor against
a theory of number words (say) if it employs one rather than the other, or both.

There are various views on the status of type-shifting rules, which may but
need not exclude each other. They may be seen as operators associated with
(possibly covert) lexical elements, as generative rules to be applied freely at any
point in the semantic derivation, or only if a type mismatch occurs. Another
view, hinted at already, is that type-shifting rules underwrite certain kinds of
polysemy. By definition, an expression is polysemous if it has several related
senses, where the relation in question may be represented by means of some
function or other. One familiar example is that many nouns have count as well
mass senses; cases in point are ‘chicken’, ‘beer’, ‘apple’, and so on. Usually,
one sense is primary while the other is derived. In the case of ‘apple’, it is
presumably the count sense that is primary, while the mass sense is derived,
and the connection between the two is some sort of deindividuating function:
apple (mass sense) is obtained, for instance, by mashing one or more apples
(count sense). With ‘beer’, the mass sense is primary, and a count sense (as in
‘two beers’) is derivable by means of a portioning function.

Viewing type-shifting rules as being on a par with the mashing and portion-
ing functions that underwrite the mass/count polysemy, one can say that the
distinction between the predicative and quantifier senses of ‘visitors’ parallels
that between the count and mass senses of ‘apple’. It is just that in the former
case the relation between the two senses is more abstract than in the latter; but
since the meanings involved are more abstract, too, one could hardly expect
otherwise.

One last remark before we start doing business. I assume as a matter of course
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that polysemy is not confined to lexical items; phrases can be, and usually are,
polysemous, too. The reason why I note this is that in the following discussion
I will be going back and forth between number words, like ‘five’, and number
phrases, like ‘five cows’. I hope this will not be objectionable, and that it will
help to make the discussion easier to follow.

3 Theories in four flavours

With these preliminaries out of the way, let us proceed to formulate some
theories of ‘five’, confining our attention to what are arguably the main senses of
the word, and beginning with a theory that is perhaps the closest to the orthodox
neo-Gricean view, the staunchest defender of which is Levinson (2000); I will
call it the ‘Vanilla Theory’. On this account, ‘five’ has a single predicative sense
and a single quantifier sense, both of which are ‘at least’ meanings. That is to
say, the predicative sense of ‘five cows’ isλx[#x ≥ 5 ∧ cow(x)] and the quantifier
sense is λP∃x[#x ≥ 5 ∧ cow(x) ∧ P(x)]. ‘#’ counts the indivuals in a group, so
λx[#x ≥ 5 ∧ cow(x)] is a predicate that holds of a group iff it consists of five
or more cows. λP∃x[#x ≥ 5 ∧ cow(x) ∧ P(x)] is a predicate of predicates: (6b)
is analysed as stating that the quantifier denoted by ‘five cows’ holds of the
predicate ‘mooed’, which is the case iff five or more cows mooed. Hence the
sentence meanings of (6a) and (6b) come out as follows:

(6) a. These are five cows.
#these ≥ 5 ∧ cow(these)

b. Five cows mooed.
∃x[#x ≥ 5 ∧ cow(x) ∧moo(x)]

According to the Vanilla Theory, (6a) means that the gathering pointed at con-
sists of cows and contains five or more individuals, and (6b) is construed as
saying that there was a group of five or more mooing cows. These meanings
will usually be complemented by (scalar) conversational implicatures. For (6a)
the implicature will be that the group in question doesn’t contain more than five
cows, and (6b) will generally implicate that the number of mooing cows didn’t
exceed five. Thus, by default ‘at least’ meanings are pragmatically strengthened
so as to yield ‘exact’ interpretations.

Assuming that ‘five cows’ is polysemous between λP∃x[#x ≥ 5 ∧ cow(x) ∧
P(x)] and λx[#x ≥ 5 ∧ cow(x)], which of these senses comes first and which is
derived? It doesn’t matter: we can start with the predicative sense and derive
the quantifier sense by way of Existential Closure, or we can start with the
quantifier sense and derive the predicative sense with Quantifier Lowering.
The resulting pair of senses will be the same in either case.

So much for the Vanilla Theory. Things become more interesting with the
Strawberry Theory, which has it that the primary sense of ‘five cows’ is an exact
predicative meaning: λx[#x = 5 ∧ cow(x)]. The quantifier sense is then derived
by means of Existential Closure, which, somewhat surprisingly perhaps, yields
an ‘at least’ meaning, namely λP∃x[#x = 5 ∧ cow(x) ∧ P(x)]. (This may look
like an exact meaning, but it isn’t, as we will presently see.)

(7) a. These are five cows.
#these = 5 ∧ cow(these)
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b. Five cows mooed.
∃x[#x = 5 ∧ cow(x) ∧moo(x)]

According to the Strawberry Theory, (7a) states that the number of indicated
cows equals five, while (7b) merely says that the number of mooing cows was
five or more; for the fact that there was a group of five mooing cows does not
rule out the possibility that there was a larger group of mooing cows, so on
the reading assigned to it by the Strawberry Theory, (7b) is true iff five or more
cows mooed. Like the Vanilla Theory, the Strawberry account theory appeals
to scalar implicature for deriving the exact construal of (7b), but the meaning
of (7a) is exact from the start. The Strawberry Theory was first adumbrated, I
believe, by Partee (1986).

The third candidate to be considered is the Chocolate Theory, which will be
our favourite. It starts with an exact quantifier sense, assigning ‘five cows’
the quantifier λP∃!x[#x = 5 ∧ cow(x) ∧ P(x)], which holds of a predicate iff the
predicate holds of one and only one group of five cows. From this, Quantifier
Lowering derives an exact predicate sense, which in its turn gives rise to an ‘at
least’ quantifier sense, courtesy of Existential Closure. So the senses associated
with ‘five’ are the same as in the Strawberry Theory plus an exact quantifier
sense, which produces the following reading for (8):

(8) Five cows mooed.
∃!x[#x = 5 ∧ cow(x) ∧moo(x)]

(‘∃!x’ means that there is just a single x such that . . . ) Had there been more than
five mooing cows, there would have been more than one group of five mooing
cows, so if there is just a single group of mooing cows, as this interpretation
has it, the number of mooing cows must have been five, no more and no less.

The Caramel Theory, which is the last on my list, is a reduced version of the
Chocolate Theory—reduced in the sense that we now suppose that, for some
reason or other, the Existential Closure rule is not available. So we start with
the same exact quantifier meaning as in the Chocolate Theory, derive an exact
predicate meaning, and in default of Existential Closure that is the end of the
story. Of all the theories under consideration here, the Caramel Theory is the
one that is closest to the New Orthodox View on number terms.

The following table sums up the main features of our four theories. Exact
meanings are represented by the identity sign, ‘at least’ meanings by ‘≥’. Pri-
mary senses are encircled (recall that for the Vanilla Theory it doesn’t matter
which sense is primary).

predicate sense quantifier sense(s)
Vanilla ≥ ≥

Strawberry =© ≥

Caramel = =©

Chocolate = =©,≥

Other theories are possible, of course. In particular, one might wish to try
flavours that take ‘at most’ senses as primary. It turns out, however, that none
of the more obvious ways of implementing this possibility are particularly
promising: if we start with an ‘at most’ quantifier sense, the predicate sense de-
rived by Quantifier Lowering is clearly wrong, and beginning with an ‘at most’
predicate sense will result in a quantifier meaning that is semantically empty.
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It would seem, therefore, that the type-shifting framework we have adopted is
biased against ‘at most’ meanings. However, I am not worried by this, because,
as I will argue in §4.5, ‘at most’ construals are always pragmatically derived,
anyway; there are no lexical ‘at most’ meanings for number words.

Given that predicate meanings and quantifier meanings are very different
entities, it isn’t entirely obvious that labels like ‘exact sense’ and ‘at least sense’
have a constant meaning in all cases. I will not attempt here to give precise
definitions of these labels, but there is one critical property that separates them
from each other. It is that ‘at least’ meanings form sets that are ordered by
entailment, while exact meanings don’t. A predicate sense is a property of
groups, and if it is an ‘at least’ sense, any group falling under ‘five’ will fall
under ‘four’, ‘three’, . . . , as well: a group of at least five cows perforce is a
group of at least four, three, . . . cows. With quantifier senses it is the same.
When used as an ‘at least’ quantifier, ‘five cows’ is a predicate that applies
to a property iff there is a group of at least five cows that have the property.
If mooing is such a property, then obviously the quantifiers denoted by ‘four
cows’, ‘three cows’, . . . apply to it, as well. So, the ‘at least’ quantifier senses
of the numerals line up in an entailment scale just as their ‘at least’ predicate
senses do.

Exact senses are different. If ‘five’ has an exact predicate meaning, i.e.
λx[#x = 5], then no group to which this predicate applies will fall under any
other number predicate. Still, the exact sense of ‘five’ is implicative in another
way: if a group has the property λx[#x = 5], then it will have sub-groups of
which the properties λx[#x = 4], λx[#x = 3], . . . hold. This yields a rank or-
dering of sorts, but it is not an entailment ordering. The same holds, mutatis
mutandis, for exact quantifier meanings.

Before we go on to compare the theories we have defined, it bears empha-
sising that, at least as far as I can see, there are no methodological grounds
for preferring either one of them to any of the others. Each of our theories
stipulates just a single lexical meaning for ‘five’; any further senses are always
derived by rules that are motivated on independent grounds. So the fact that
the Chocolate Theory produces three senses, while the others have only two,
may not be held against it. Whatever one might think of Grice’s (1989) maxim
that senses are not to be multiplied beyond necessity (and I am admittedly
sceptical; see Geurts 1998b), it simply doesn’t apply here.

One last caveat: my use of the labels ‘exact’ and ‘at least’ for the purpose of
characterising meanings of number words is intended to be non-committal with
respect to the semantics of the words ‘exact’ and ‘at least’. If a theory assigns
‘five’ an exact quantifier meaning, it is not committed to the view that ‘five’ is
synonymous with ‘exactly five’, in any of its senses; and the same for ‘at least’
meanings. In this section we have defined to some degree of precision what
‘five’ means in a range of theories; nothing has been said about the meanings of
expressions like ‘exactly five’ or ‘at least five’, and as we will see below (§4.2),
the semantics of such expressions is not cut and dried by any means.

4 Not just a matter of taste

In the remainder of this paper, we will compare our four theories on a number
of counts. As I have intimated already, the Chocolate Theory is our destined
winner; runners-up will be the Caramel and Strawberry Theories; the Vanilla
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Theory is to be withdrawn from the contest at the beginning of the third round.
So the final score will be as follows:

1. Chocolate
2. Caramel, Strawberry
3. Vanilla

Readers who already at this point are satisfied with this outcome may wish to
skip to the references section.

4.1 Entailment patterns

Consider the following arguments:

(9) a. Barney wrote five papers.
These are the papers he wrote.
So: These are five papers.

b. These are five papers.
They are the papers Barney wrote.
So: Barney wrote five papers.

Intuitively speaking, both arguments are valid, and it would seem that both in-
volve essentially the same kind of reasoning. However, according to the Straw-
berry Theory, only (9b) is correct by virtue of its logical form; (9a) only goes
through on the assumption that the first conjunct of the premiss is construed as
implicating that Barney didn’t write more than five papers. Put otherwise, the
Strawberry Theory predicts that, whereas (9b) is (logically) valid, it depends
on the context whether (9a) is correct or not. I take it that this discrepancy is
counterintuitive.

On the remaining accounts, both arguments are valid, but the theories secure
their validity in different ways. For the Caramel and Chocolate Theories, the
arguments are valid because all occurrences of ‘five’ in (9) demand or at least
prefer exact readings. For the Vanilla Theory, the arguments are valid because
all occurrences of ‘five’ in (9) have ‘at least’ readings—which is intuively wrong,
and as we will see in a moment this intuition is supported by good arguments.
First brownie points for the Caramel and Chocolate Theories.

The Vanilla Theory is the only one to support the validity of (10), which
doesn’t argue in its favour:

(10) These are five cows.
So: These are four cows.

On the other hand, the Caramel Theory is the only one not to support the
validity of (11), which prima facie speaks for it and against its competitors:

(11) Five cows mooed.
So: Four cows mooed.

However, on reflection it is less than certain that (11) is not valid, come what
may. If there were five mooing cows, one might argue, then it must also be
true that there were four mooing cows. While there is no way of construing
the number words so as to make (10) come out valid, it is at least arguable that
(11) is valid in some sense. Be this as it may, it should be noted that only the
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Vanilla and Strawberry theories are committed to the view that (11) is valid tout
court. For the Chocolate Theory, the number words can be interpreted in such
a way that the argument comes out valid, but it is not the preferred way, for
the principal senses of ‘five’ and ‘four’ are exact. It seems to me that this view
is reasonable enough.

4.2 Redundancy arguments

Several authors have argued that semantical considerations regarding modi-
fiers such as ‘at least’, ‘at most’, and ‘exactly’ may be used to arbitrate between
competing analyses of number words (e.g. Koenig 1991, Carston 1998, Geurts
1998b). The argument goes as follows. Consider how complex expressions
like ‘at least five’, ‘at most five’, and ‘exactly five’ are interpreted. If ‘five’ has
an exact meaning, then the modifier in ‘exactly five’ is semantically empty, for
then ‘five’ is synonymous with ‘exactly five’. Furthermore, if ‘five’ is exact, the
modifier in ‘at least five’ selects (speaking loosely) the interval starting with
5 and going upwards, while ‘at most’ selects the interval starting with 5 and
going downwards. So, on the assumption that ‘five’ has an exact meaning,
the semantic contributions of ‘at least’ and ‘at most’ are mirror images, as one
should expect. By contrast, if ‘five’ has an ‘at least’ meaning, ‘exactly five’ is
not redundant, but ‘at least five’ is, the modifier being semantically empty, and
therefore very different from what would seem to be its dual, i.e. ‘at most’.
In brief, we will have to choose between claiming either that ‘at least’ and ‘at
most’ mirror each other and ‘exactly’ is semantically empty, or that ‘at least’
is semantically empty while ‘at most’ and ‘exactly’ resemble each other more
than either of them resembles ‘at least’. Since the first horn of the dilemma is
clearly the more attractive one, we are entitled to conclude that ‘five’ has an
exact meaning.

This argument is flawed. To begin with, as a matter of empirical fact, ‘at least’
and its kin take as arguments expressions with ‘at least’ meanings, as witness,
‘at least warm’, ‘more than happy’, and so on. Secondly, theories developed by
Krifka (1999) and Geurts and Nouwen (2005) prove that it is possible to analyse
‘at least’ and ‘at most’ in such a way that they are mirror images and apply to
scalar and non-scalar arguments alike. Thirdly, on the account I proposed with
Rick Nouwen, ‘at least five’ and ‘five’ are not synonyms, even if ‘five’ has an ‘at
least’ meaning. We argue that superlative modifiers like ‘at least’ and ‘at most’
have modal meanings, and that a sentence like (12) conveys two things: that
the speaker is certain that five cows mooed, and that he considers it possible that
more than five cows mooed.

(12) At least five cows mooed.

(Note, incidentally, that if the modal analysis of ‘at least’ and ‘at most’ is on
the right track, it is a mistake to assume, as it is standardly done, that these
modifiers are the linguistic counterparts to ‘≥’ and ‘≤’, respectively, and that it
is misleading to speak of ‘at least’ and ‘at most’ senses of number words. Cf.
also Bultinck 2002: 229-231). It is not the purpose of this paper to defend the
modal analysis of ‘at least’ and ‘at most’. The relevant point for now is just
that theories such as Krifka’s and Geurts and Nouwen’s appear to be feasible,
which is enough to discredit the redundancy argument.

But even if the argument is flawed, part of it can be saved, as follows. If
‘exactly’ accepted arguments with ‘at least’ meanings, expressions like ‘exactly
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warm’ and ‘exactly happy’ should be possible—which they are not. As it turns
out, ‘exactly’ doesn’t make its argument exact; the argument has to have an
exact construal, to begin with: compare ‘exactly five cows’ or ‘exactly half of
the dough’ with ‘∗exactly warm’, ‘∗exactly some cows’, etc. These observations
argue against the Vanilla Theory and in favour of the Caramel and Chocolate
Theories. It depends whether they confirm or disconfirm the Strawberry The-
ory. If the argument of ‘exactly’ is always predicative, they confirm the theory;
if it may be a quantifier, they disconfirm it. Since, prima facie at least, the ∗-ness
of expressions like ‘exactly every cow’ suggests that ‘exactly’ does not combine
with quantifiers, we will be generous and award the Strawberry Theory a point,
too.

If ‘exactly’ is semantically empty, as I maintain, then its purpose must be
to reduce pragmatic slack, in much the same way as adjectives like ‘real’ and
‘genuine’ do (Geurts 1998b, Lasersohn 1999). A ‘real flower’ is just a flower
and a ‘real elephant’ is just an elephant; the adjective doesn’t add anything to
the semantic content of the noun—which is not to say that it is redundant, for
it blocks the kind of pragmatic modulation we observe in ‘plastic flower’ or
‘marble elephant’:

(13) a. ?These are real flowers and they are plastic.
b. ?The terrace was surrounded by real elephants, made of pink marble.

‘Exactly’ works the same way, more or less.

4.3 Predicates vs. quantifiers

As observed by Partee (1986), whereas number terms allow for ‘at least’ inter-
pretations when used as quantifiers, in their predicative uses they are always
exact. The following examples illustrate the contrast:

(14) a. Fred took five pills—in fact, he took six.
b. ?These are five pills—in fact, there are six of them.

While the Strawberry and Chocolate Theories account for this contrast, the
Vanilla Theory does not (the Caramel Theory will be taken up two paragraphs
down). I consider this to be strong evidence against the latter, and it is reinforced
by the observation that the ‘at least’ use of number terms is exceptional in two
ways. First, it seems clear that cases like (14a) are quite rare. Secondly, if we
consider again the variety of possible uses of number terms illustrated in (2),
it would seem that, among these, only the quantifier and measure uses give
rise to ‘at least’ interpretations (for pertinent observations, see Sadock 1984,
Horn 1992, Bultinck 2002). The main tenet of Vanilla Theory is that ‘at least’
interpretations are basic, which apparently is not the case. It will be evident by
now that this theory is not viable, and I will consider it no further.

An anonymous reviewer suggests that there may be contexts in which one
could truly and felicitously state (15), even while referring to a collection of
more than five cows:

(15) These are five cows.

Suppose that our interlocutors need five cows for some rural purpose or other.
After some searching, they come across an entire herd of cows. Pointing at the
herd, might one of the rustics use (15) to make a true and felicitous statement?
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I very much doubt it. Or try the following. Point at Da Vinci’s Last Supper, and
say: ‘These are five apostles.’ Doesn’t work, does it?

The Strawberry and Chocolate Theories explain the contrast between (15a)
and (15b) by providing an exact predicate sense and an ‘at least’ quantifier sense.
It may be argued that the Chocolate Theory has an edge over the Strawberry
Theory, because it captures the observation we just made that cases like (15a)
are somewhat unusual: if the dominant quantifier sense of ‘five’ is exact and its
‘at least’ sense is recessive, as the Chocolate Theory has it, this is as expected.

At first sight, it would appear that the Caramel Theory fails to explain these
data, too, but we shouldn’t dismiss it too soon. The ‘in fact’ construction
is standardly used for establishing if a given expression admits of a scalar
interpretation, but other constructions have been used for the same purpose
(Horn 1989, Matsumoto 1997):

(16) a. The weather is warm, if not hot.
b. Fred took five pills, if not six.
c. These are five pills, if not six.

The ‘if not’ test only partly confirms our initial results. It corroborates that,
when used as a quantifier, ‘five’ has a scalar meaning, but it also suggests that
the same holds for the predicative use of ‘five’: (16c) would be felicitous in a
context in which the speaker is making a bet about the content of a closed box,
for example. So what, if anything, do these tests prove?

As shown in some detail by Matsumoto (1997), the various tests for diag-
nosing scalarity are not equipollent; they test for different things. To illustrate,
rank-order terms like ‘major’ and ‘lieutenant colonel’ test positive on one diag-
nostic and negative on the other:

(17) a. She is a major, if not a lieutenant colonel.
b. ?She is a major—in fact, she is a lieutenant colonel.

Being a lieutenant colonel does not entail being a major; on the contrary: having
either rank entails not having the other. Nevertheless, ‘lieutenant colonel’ and
‘major’ co-inhabit a scale of sorts: the former is higher than the latter; and this
is good enough, apparently, for passing the ‘if not’ test.

That the ‘in fact’ diagnostic tests for entailment, and not just for any kind of
precedence ordering, is corroborated by Matsumoto’s observation that exam-
ples like the following are fine:

(18) We bought a dog—in fact, a German shepherd.

If it isn’t a priori obvious that being hot entails being warm, there can be no
doubt that being a German shepherd entails being a dog; the ‘in fact’ test
confirms this.

The upshot of the foregoing argument is that the contrast exhibited in (14)
is the crucial datum. To explain this contrast, we need a theory that predicts
that numerals line up in entailment scales when used as quantifiers but not
when used predicatively. The Strawberry and Chocolate Theories meet this
requirement; the Vanilla and Caramel Theories don’t.

4.4 Experimental evidence
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In recent years, experimental studies have yielded a wealth of data on how
scalar expressions are processed and acquired, and some of these results, es-
pecially the ones reported by Papafragou and Musolino (2003) and Musolino
(2004), are germane to the issues under discussion here.

In an experiment conducted by Papafragou and Musolino (2003), Greek-
speaking 5-year olds and adults were invited to evaluate sentences like the
following in situations that rendered them under-informative (the scenarios
are indicated here in square brackets). More accurately, each of the sentences
might be construed, in principle, as being true in the relevant scenario.

(19) a. Some of the horses jumped over the fence. [All of them did.]
b. The girl started making the puzzle. [She finished it, too.]
c. Two of the horses jumped over the fence. [Three of them did.]

Adult speakers, Papafragou and Musolino found, almost always reject all of
these sentences, the average rate of acceptance being 5%. Children, by contrast,
accepted statements like (19a) and (19b) in the majority of cases (mean accep-
tance rates were 87.5% and 90%, respectively), while accepting statements like
(19c) only 35% of the time. Other experiments by Papafragou and Musolino
(2003) and Musolino (2004) confirm these results. (Is it defensible to assume,
as Papafragou and Musolino do, that ‘start’ and ‘finish’ are scalar expressions?
Frankly, I have no strong feelings one way or the other, but for our purposes it
doesn’t matter, anyway.)

Note that in the materials used in this experiment, numerals are construed
as quantifiers, and the same holds for the other experiments reported by Pa-
pafragou and Musolino. What these data show, then, is that young children
clearly differentiate between scalar expressions and quantifying number words,
and most importantly that for children numerals and scalar quantifiers like
‘some’ are not at all alike. This is bad news for the Strawberry Theory, which
maintains that, when used as quantifiers, numerals are scalar expressions. It
is good news for the Caramel Theory, which holds that numerals can never be
construed as scalars, as well as for the Chocolate Theory, which grants numer-
als a scalar interpretation, but also claims that their preferred interpretation is
exact.

At this juncture, advocates of the Strawberry Theory are bound to object
that the acquisition data merely confirm what should have been clear from the
beginning, namely that in the math-literate cultures in which Papafragou and
Musolino conducted their experiments, number words are used very differ-
ently from (other) scalar terms. It is more than likely, for example, that the
great majority of children that participated in these experiments knew how to
count. Levinson discusses this point at some length, and ends up suggesting
that ‘. . . all implicatures are potentially subject to a process of conventionaliza-
tion and the number words may be under pressure to lexicalize the ‘exactly’
reading . . . ’ (Levinson 2000: 89-90) If I understand Levinson correctly, this
is not to say that number words have exact lexical meanings, but rather that
they have ‘at least’ meanings which are complemented by ‘generalised conver-
sational implicatures’. However, as I have argued elsewhere (Geurts 1998b,
cf. also Carston 2004), despite Levinson’s hefty contribution on the subject, it is
not at all clear what generalised conversational implicatures are, and most to the
point, it isn’t clear how they are to be distinguished from good old-fashioned
meanings. Pending further clarification of the concept of generalised conver-
sational implicature, it very much looks as if the Strawberry Theory can only
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be saved by introducing exact meanings under a different name.
There is another way for the Strawberry Theorist to respond to Papafragou

and Musolino’s experimental results, namely by pointing out that, even if their
results show that, for whatever reason, children differentiate between scalar
expressions and number words, adult participants do not. According to Pa-
pafragou and Musolino’s data, grown-ups equally often accept statements with
‘some’ and corresponding statements with numerals, in situations in which
they are pragmatically infelicitous—that is to say, both types of sentence are
almost always rejected. However, it should be noted that the patterns of adult
responses in Papafragou and Musolino’s experiments were exceptionally di-
chotomous in comparision to similar experiments reported elsewhere. For
example, one of Noveck’s (2001) findings was that adults accept statements
like (20) in only 41% of the cases, and other studies have yielded similar results.

(20) Some giraffes have long necks.

Unfortunately, as far as I know, there have been no experimental studies aimed
expressly at comparing how adults deal with number words vs. scalar quan-
tifiers like ‘some’, though preliminary results obtained by Pouscoulous (forth-
coming) suggest rather strongly that Papafragou and Musolino’s acquisition
data are mirrored in adult behaviour.

4.5 ‘At least’ vs. ‘at most’ readings

It has been claimed by Carston (1998), among others, that in addition to an
exact and an ‘at least’ interpretation, number words also have an ‘at most’
interpretation, which is on a par with the others. Some of Carston’s examples
are:

(21) a. She can have 2000 calories without putting on weight.
b. The council houses are big enough for families with three kids.
c. You may attend six courses.

The most plausible interpretation of (21a) is that the person in question can
have at most 2000 calories without putting on weight, and the other sentences,
too, are paraphreasable with ‘at most’. Carston takes this to imply that number
words may give rise to ‘at most’ interpretations, which have the same status
as exact and ‘at least’ interpretations, and she proposes to derive all of these
construals from a single lexical meaning which ‘is neutral among the three
interpretations’ (Carston 1998: 208). Carston likens the meaning of ‘five’ to the
semantics of genitive endings. Just as ‘Fred’s cow’ may refer to any cow that
stands in a contextually salient relation to Fred (it may be a cow that Fred owns
or one he saw, embraced, etc.), ‘five’ may be used to express various numerical
concepts somehow related to the number five.

One problem with Carston’s suggestion is that the range of possible constru-
als that ‘five’ admits of is quite narrow in comparison to that of the genitive.
Whilst the latter is indefinitely large, the possible construals of ‘five’ are not
even a handful: ‘exactly five’, ‘at least five’, ‘at most five’, and perhaps ‘approx-
imately five’. It is fairly evident that ‘five’ cannot be used to express notions like
‘three times five’, ‘any number but five’, or ‘ten’ (which, after all, is definable
as the smallest number divisible by, but not equal to, five). Hence, the interpre-
tation of ‘five’ is much more constrained by its meaning than Carston allows
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for, and it would seem that building in suitable constraints into its lexical entry
would come down to stipulating multiple senses; the proposed analysis would
collapse into an ambiguist account.

As far as I can see, the only way of capturing Carston’s assumption that the
various construals of ‘five’ have the same status is by hardwiring all of them
into the lexicon—which is not what Carston wants, nor anybody else, for that
matter. However, it is instructive to consider a weaker version of Carston’s
homogeneity claim, namely the idea that the ‘at least’ and ‘at most’ construals
of ‘five’ are on a par in that they both arise as pragmatic embroidery on an
exact semantics. This is the position advocates of the Caramel Theory are
committed to, and prima facie it looks promising enough. Consider Carston’s
example (21c), for instance. If the Caramel Theory is right, this can only be
construed as giving the addressee permission to attend exactly six courses. But
as the permission to attend fewer than six courses is less of concession, it is
natural (though not mandatory) to infer that this is permitted, too; while on
the other hand, since the permission to attend more than six courses is more
of concession, it is natural (though not mandatory) to infer that this is not
permitted. Hence, the ‘at most’ understanding of (21c) is readily explained as
resulting from pragmatic inference. (21a) and (21b) can be accounted for along
the same lines, and to the best of my knowledge, the same goes for ‘at most’
construals across the board.

‘At least’ construals of sentences like the following are equally amenable to
a pragmatic analysis:

(22) a. Wilbur doesn’t have five cows: he has two.
b. Wilbur doesn’t have five cows: he has eight.

(23) If Wilbur has five cows, he must be a happy farmer.

If ‘five’ only has an exact quantifier meaning, one would expect that not having
five cows is consistent with having more or fewer than five, and as shown by
(22a,b), this turns out to be so. Moreover, neither sentence seems more marked
than the other, so there is no reason to suppose that one is ‘metalinguistic’ while
the other is not (Horn 1989, Geurts 1998a).

(23) admits of at least two readings. It may be construed as implying that,
if the number of Wilbur’s cows does not equal five (that is, if he owns more
or fewer than five cows), there is no saying if he will be a happy farmer.
Alternatively, and more plausibly, the sentence may be construed as saying
that, if Wilbur owns five or more cows, he must be a happy farmer. Thus
understood, the sentence yields an ‘at least’ interpretation, but this is not to say
that on this construal the word ‘five’ has an ‘at least’ meaning. For suppose
that it has an exact meaning. Then the literal meaning of (23) is that, if Wilbur
has neither more nor fewer than five cows, he is a happy farmer. This doesn’t
exclude the possibility that owning more than five cows will make him happy,
but since having more than five cows is likely to be considered preferable to
owning a mere five, it may be inferred that, if Wilbur has more than five cows,
he will be happy, too, and possibly even happier. Note, incidentally, that an ‘at
most’ interpretation would be derivable in the same way, provided the sentence
was uttered in a context in which having fewer than five cows was considered
preferable to having five.

The foregoing observations might be taken to suggest that ‘at least’ construals
of sentences containing ‘five’ are always pragmatically derivable, and therefore
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on a par with ‘at most’ construals. However, this is not the case, as witness the
minimal pair in (24):

(24) a. You may take five cards.
b. You must take five cards.

Sentence (24a) admits of an ‘at most’ construal, and in our discussion of (21c)
we have already seen how this may be derived on the basis of an exact inter-
pretation of the number word. Sentence (24b) admits of an ‘at least’ construal,
and this is not derivable along the same lines. For suppose that ‘five’ has an
exact reading. Then (24b) states that the addressee must take neither more nor
fewer than five cards, which entails that he or she may not take more than five
cards; so an ‘at least’ interpretation of the sentence is ruled out by its semantic
content. Put otherwise, if we want to account for the fact that (24b) may be
understood as allowing the addressee to take more than five cards, ‘five’ will
have to have an ‘at least’ meaning.

The Caramel Theory entails that the only way of obtaining an ‘at least’ or
‘at most’ construal for a sentence containing ‘five’ is by means of pragmatic
inference. By contrast, the Chocolate Theory entails an asymmetry: whereas
an ‘at most’ interpretation can only be pragmatic, an ‘at least’ reading may be a
semantic matter. The upshot of the foregoing discussion is that, in this respect
at least, Chocolate beats Caramel.

5 Chocolate wins

And with a margin, too. The Chocolate Theory is the only one not to have
encountered any difficulties in the foregoing pages. The Caramel Theory fails
to account for the differences between predicate and quantifier senses and the
asymmetry between ‘at least’ and ‘at most’ readings. The same asymmetry is
a stumbling block for the Strawberry Theory, which in addition is hindered by
experimental evidence and some of the entailment patterns licensed by ‘five’.
As for the Vanilla Theory, it was an act of mercy to take it out of the race at an
early stage, for it would only have gone on making a fool of itself.

To conclude, it should be noted that, though the author loves Chocolate,
championing any particular theory of number words was not the main objective
of this paper. Rather, it was to illustrate a general approach to the semantics
of number words, which is based on the assumption that such words are
polysemous, and that their polysemy can be captured by means of type-shifting
rules. And besides, the case for the Chocolate Theory is still incomplete, since
we have confined our attention to two of the senses of ‘five’ and its congeners,
and there may well be more.
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