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Abstract

Since the publication of [Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of
number. Cambridge, MA: Harvard University Press.] seminal work on the development of verbal
counting as a representation of number, the nature of the ontogenetic sources of the verbal
counting principles has been intensely debated. The present experiments explore proposals
according to which the verbal counting principles are acquired by mapping numerals in the count
list onto systems of numerical representation for which there is evidence in infancy, namely, ana-
log magnitudes, parallel individuation, and set-based quantiWcation. By asking 3- and 4-year-olds
to estimate the number of elements in sets without counting, we investigate whether the numerals
that are assigned cardinal meaning as part of the acquisition process display the signatures of
what we call “enriched parallel individuation” (which combines properties of parallel individua-
tion and of set-based quantiWcation) or analog magnitudes. Two experiments demonstrate that
while “one” to “four” are mapped onto core representations of small sets prior to the acquisition
of the counting principles, numerals beyond “four” are only mapped onto analog magnitudes
about six months after the acquisition of the counting principles. Moreover, we show that chil-
dren’s numerical estimates of sets from 1 to 4 elements fail to show the signature of numeral use
based on analog magnitudes – namely, scalar variability. We conclude that, while representations
of small sets provided by parallel individuation, enriched by the resources of set-based quantiWcation
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are recruited in the acquisition process to provide the Wrst numerical meanings for “one” to
“four”, analog magnitudes play no role in this process.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The culturally widespread verbal count list (“one, two, threeƒ”), deployed in
accord with what Gelman and Gallistel (1978) call the “counting principles,” repre-
sents the positive integers.1 The counting principles provide an account of how the
count list encodes the successor function; i.e. if a numeral “n” refers to cardinal value
n and “p” immediately follows “n” in the count list then “p” refers to n + 1 (see Gel-
man & Gallistel, 1978; for the classic analysis of the successor function in terms of
counting principles). Ever since the publication of Gelman and Gallistel’s (1978) sem-
inal investigation of knowledge of counting in childhood, the question of the sources
of the verbal counting principles has been a central concern to developmental psy-
chologists. Following Spelke, Breilinger, Macomber, and Jacobsen, 1992, 1996;
Spelke et al. (1992) see also Carey and Spelke, 1996 we take the view that evolution-
arily ancient, innate “core knowledge” systems provide the cognitive primitives that
support learning in childhood. Thus, on our view, determining what core systems
support the acquisition of the counting principles is a key aspect of the investigation
of their sources.

Gelman and Gallistel (1978, Gallistel & Gelman, 1992) suggested that the core
representations underlying children’s successful mastery of verbal counting had the
same structure as the verbal counting principles, except that they were formulated
non-verbally. Multiple lines of research have provided evidence against this conten-
tion. First, the core representations of number for which there is evidence in infancy
diVer from the count list both in their format (they do not represent number with an
ordered list of discrete symbols) and their expressive power (none can represent exact
numbers larger than 4; see Carey, 2004 and Feigenson, Dehaene, & Spelke, 2004 for
reviews). Second, learning how the counting principles are implemented in the verbal
count list (“one, two, three, four, Wveƒ”) is a challenging and protracted process in
which children’s initial interpretation of the meaning of the numerals and of the
count list itself dramatically deviates from the adult interpretation (e.g., Condry &
Spelke, under review; Fuson, 1988; Le Corre, Van de Walle, Brannon, & Carey, 2006;
SchaeVer, Eggleston, & Scott, 1974; Siegler, 1991; Wynn, 1990, 1992). Finally, some
cultures still do not have any representational system remotely akin to the count list
(Gordon, 2004; Pica, Lemer, & Izard, 2004), providing further evidence that core
knowledge does not comprise non-verbal counting principles.

1 Strictly speaking, a Wnite count list deployed in accordance with the counting principles represents only
a Wnite subset of the positive integers (see Rips, Asmuth, & BloomWeld, 2006, for discussion of how the
counting principles deWned over a Wnite count list are generalized to represent natural number).
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Thus, the nature of the cognitive primitives out of which the verbal counting princi-
ples are learned remains unknown. The present paper explores proposals according to
which these primitives are provided by core representations with numerical content for
which there is evidence in infancy – namely, parallel individuation, set-based quantiWca-
tion, or analog magnitudes. Before laying out how these core systems could possibly sup-
port the acquisition process, we brieXy review current characterizations of their structure.

1.1. Prelinguistic number representations: Analog magnitudes, parallel individuation, 
and set-based quantiWcation

Analog magnitude representations of number – what Dehaene (1997) calls “the
number sense” – are found in human and non-human animals. Many models of this
representational system have been proposed (Brannon, WusthoV, Gallistel, & Gib-
bon, 2001; Church & Broadbent, 1990; Church & Meck, 1984; Dehaene, 2003; Deh-
aene & Changeux, 1993; Verguts & Fias, 2004), but all agree that it encodes cardinal
values with analog symbols the magnitudes of which are proportional to the number
of individuals in the represented sets. In short, analog magnitudes encode number as
would a number line. In humans, this system is available at least by the sixth month
of life (Brannon, 2002; Lipton & Spelke, 2003; McCrink & Wynn, 2004; Wood &
Spelke, 2005; Xu & Spelke, 2000). Its use is characterized by two related psychophys-
ical signatures –Weber’s law and scalar variability. Weber’s law states that discrimi-
nability of two quantities is a function of their ratio (e.g. 5 and 10 are easier to
discriminate than 45 and 50; see Dehaene, 1997 for a review). Scalar variability holds
the standard deviation of the estimate of some quantity is a linear function of its
absolute value. For example, when prevented from counting, adults can estimate the
numerical sizes of sets by relying on mappings between numerals and analog magni-
tudes. Under these conditions, both the average and the variability of the estimates
increase at the same rate as the sets grow larger (Cordes & Gelman, 2005; Izard &
Dehaene, under review; Whalen, Gallistel, & Gelman, 1999).

A second system of representation with numerical content deployed in non-
human primates and young infants is “parallel individuation”2 (Carey & Xu, 2001;
Feigenson & Carey, 2003, 2005; Feigenson, Carey, & Hauser, 2002; Hauser & Carey,
2003; Uller, Carey, Huntley-Fenner, & Klatt, 1999; Xu, 2003). This system represents

2 Parallel individuation should not be equated with Kahneman and Treisman’s “Object-File” system
(e.g. Kahneman, Treisman, & Gibbs, 1992) nor with Pylyshyn’s “FINST” system (e.g. Pylyshyn, 2001).
Rather, the structure of this system is much closer to what Vogel, Woodman, and Luck (2001) have in
mind for visual short-term memory. The reason is that, in most cases, infants’ capacity to resolve problems
involving small sets (e.g. removing up to 3 balls from a box; Feigenson & Carey, 2003, 2005; Feigenson &
Halberda, 2004) implies that they can represent small sets of individuals, hold this representation in work-
ing memory, and compare it to a visible set on the basis of one-to-one correspondence. As far as we know,
neither Object-Files nor FINSTs support the comparison of two sets on this basis; rather, they are meant
to track unique individuals through space and time. The system Vogel et al.’s describe, on the other hand,
is a working memory system that can hold representations of individuals (objects in their case) in parallel,
and that can support comparisons between the working memory set and a visible set (in their case, com-
parisons based on color). Thus, Vogel et al.’s system could possibly support comparisons of representa-
tions of sets on the basis of one-to-one correspondence.
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sets of individuals by creating working memory models in which each individual
in a set is represented by a unique mental symbol. The level of speciWcation of the
mental symbols in each set has not yet been well established. For example,
whether a set of two dogs is represented as doga dogb or objecta objectb or individ-
uala individualb is still unknown. What is clear however is that this system has a
hard capacity limit. In adults, it cannot hold any more than 4 individuals in paral-
lel (e.g. Vogel et al., 2001). Many experiments suggest that the infant system can-
not hold any more than 3 individuals in parallel (Feigenson & Carey, 2003, 2005;
Feigenson et al., 2002), though one group of researcher has found that it too can
hold up to 4 (Ross-Sheehy, Oakes, & Luck, 2003). Importantly, unlike the analog
magnitude system, this system contains no symbols for number. However, it is
clear that it has numerical content. Criteria for numerical identity (sameness in the
sense of same one) determine whether a new symbol is created in a given model
(Xu & Carey, 1996). Additionally, infants can create working memory models of
at least two sets of 3 or fewer individuals, and can compare these models on the
basis of 1–1 correspondence to determine numerical equivalence or numerical
order (Feigenson & Carey, 2003, 2005; Feigenson & Halberda, 2004). Thus, num-
ber is represented implicitly in this system, through the criteria that maintain 1–1
correspondence between working memory symbols and individuals in the world,
and through the computations that operate over mental models of small sets.

A third system available to non-linguistic primates and to preverbal infants is
what we will call the “set based quantiWcational system”. This system is the root of
the meanings of all natural language quantiWers (Chierchia, 1998; Link et al.,
1983). To provide the basis for quantiWcation, this system explicitly distinguishes
the atoms, or individuals, in a domain of discourse from all the sets that can be
comprised of them. For example, in English, this system connects atoms with the
singular determiner “a” and sets with 2 or more individuals with the plural
marker “-s” and with the quantiWer “some”. In other languages, it supports the
meanings of dual-markers (e.g. in Upper Sorbian, Corbett, 2000) or trial-markers
(e.g. in Larike, Corbett, 2000). Just as “a” picks out what atoms have in common,
dual-markers pick out what sets consisting of just two atoms have in common,
and trial-markers do so for sets of three atoms. Recent studies suggest that non-
human primates and infants under the age of 2 command the resources of set-
based quantiWcation, at least at the level of the singular/plural distinction (Barner,
Thalwitz, Wood, & Carey, in press, Barner Kouider, Harlberda, Wood, & Carey,
under review, Kouider et al., 2006).

1.2. Pathways to the counting principles: Possible mappings between core representa-
tions of number and the count list

Early in their third year, English-learning children learn to recite the count list
in the standard order (i.e. “one, two, three, four, Wve,ƒ”) at least up to “ten”.
While it has the same form as the adult list, this early count list is numerically
meaningless (Fuson, 1988; Le Corre et al., 2006; Wynn, 1990, 1992). Thus, the
numerals in the list function as placeholders that can be mapped onto core repre-
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sentations of numbers to support the acquisition of the counting principles.
Mappings between numerals in the placeholder count list and relevant core
representations could plausibly be made via ostentation (e.g. map “three” onto a
model of 3 individuals and/or onto an analog magnitude representation of 3 by
hearing “three” used to refer to a set of 3 things). We now review three proposals
for how such mappings might inform the acquisition of the counting principles.

The “analog magnitudes alone” hypothesis. Many have contended that
mappings between the placeholder count list and analog magnitudes could
support the acquisition of the counting principles on their own (Dehaene, 1997;
Wynn, 1992, 1998).3 Mappings between numerals and magnitudes would endow
the numerals with numerical meaning, but would not endow them with exact
numerical meaning (where numerals have exact meaning if they only apply to a
unique cardinality). Rather, they would endow them with approximate numerical
meaning because analog magnitudes are a noisy representation of number. Given
that the noise in analog magnitudes increases as a function of the represented
number, this is particularly true for large numerals. Thus, while mapping “two” to
analog magnitudes could create a close approximation of an exact numerical
meaning, mapping “eight” wouldn’t. Rather, the latter mapping would support
the application of this numeral to a range of sets centered around eight (e.g. 6, 7, 8,
9, and 10).

Despite their approximate character, analog magnitudes could play a key role in
the acquisition of the counting principles. Indeed, since analog magnitudes can repre-
sent numerical ordering (e.g. 2 < 4 < 8) in prelinguistic infants (Brannon, 2002), map-
pings between numerals and analog magnitudes could allow children to make an
“analogy between the magnitudinal relationships of their own representations of
numerosities, and the positional relationships of the number words” (Wynnp. 250,
1992) . This would allow children could to learn a key property of the count list,
namely that “later in the list means larger set,” where the content of “larger set” is
given by analog magnitudes.

Evidence that numerals (and Arabic digits) are eventually mapped to magnitudes
is plentiful (e.g. Cordes & Gelman, 2005; Dehaene, 1997; Moyer & Landauer, 1967;
Whalen et al., 1999). For example, when adults produce verbal estimates of the sizes
of sets without counting, their estimates show the other signature of analog magni-
tudes, namely scalar variability (Izard & Dehaene, under review; Whalen et al., 1999;
see also Cordes & Gelman, 2005; for evidence of scalar variability in numeral com-
prehension). Much of this mapping is already in place in the preschool years (Dun-
can & McFarland, 1980; Huntley-Fenner, 2001; Lipton & Spelke, 2005; Sekuler &
Mierkiewicz, 1977; Temple & Posner, 1998). For example, as long as they can count

3 Gallistel and Gelman (1992, 2000) have also proposed that analog magnitudes are the basis of the
acquisition of the counting principles. However, they believe that the analog magnitude system instantiates
the counting principles. Since our goal is to explore how the verbal counting principles could be acquired
out of conceptual systems that do not function in terms of counting principles, Gelman and Gallistel’s pro-
posal is not listed here.
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to “one hundred”, 5-year-olds can estimate the cardinal values of sets of up to one
hundred objects without counting (Lipton & Spelke, 2005), suggesting that they have
mapped most of the numerals in their count list to analog magnitudes. Therefore, the
question is not whether children ever form mappings between their numerals and
analog magnitudes but rather whether the formation of these mappings is a part of
the acquisition of the counting principles.

The “enriched parallel individuation alone” hypothesis. Many have proposed
that the counting principles could be entirely acquired out of mappings between
“one”, “two”, “three”, and perhaps even “four” and representations of small sets
provided by a capacity-limited system (Carey, 2004; Hurford, 1987; Klahr & Wal-
lace, 1976). Though all proposals of this type have a similar structure, we focus on
Carey’s (2004). On this view, children acquire the verbal counting principles out of
mappings between representations of small sets that are created out of enriched
parallel individuation and set-based quantiWcation. Hereafter, we will use the
locution “enriched parallel individuation” to refer to the numerical representa-
tions created out of the combination of these two systems. Via its symbols
for small sets of individuals, e.g. singular, dual, and trial markers or {ix}, {ix iy},
{ix iy iz}, respectively, set-based quantiWcation provides the Wrst meaning for chil-
dren’s numerals. Each of these meanings is stored as a mapping between each
numeral and a long-term memory model of a set. Thus, the meaning of “one”
would be {ia} – a model containing a single individual Wle. The meaning for “one,”
would at this point be the same as the meaning of the singular determiner “a”.
Likewise, the meaning for “two” would be {ia, ib}, or the same as that of dual
markers, and so on for all numerals up to “three” or “four”. The links between
numerals and their corresponding models would be stored in long-term memory.

To use this system to apply the correct numeral to a given set (e.g. two dogs),
children would have to (1) use parallel individuation to set up a working memory
model the set in the world (e.g. doga, dogb), (2) compare this working memory
model to the stored long-term memory models on the basis of one-to-one corre-
spondence, and (3) select the numeral that has been mapped onto the long-term
memory model that matches the working memory model (e.g. “two”). Mappings
between the small numerals and models of individuals could eventuate in the
acquisition of the counting principles by supporting the induction that “next in
the count list” means “add 1 individual” (Carey, 2004; Hurford, 1987; Klahr &
Wallace, 1976).

The “parallel individuation and analog magnitudes” hypothesis. A priori, there are
no reasons why the counting principles should be acquired out of a single core sys-
tem. Indeed, Spelke and her colleagues (Feigenson et al., 2004; Hauser et al., 2004;
Spelke & Tsivkin, 2001a) proposed that children acquire the counting principles by
mapping the numerals in their placeholder count list onto representations from each
of the core number systems. On this view, children would have to combine the
insights provided by each system to acquire the counting principles. That is, they
would only induce the counting principles once they have noticed that “next in the
count list” means “add one individual” and that it means “larger cardinal value as
encoded by analog magnitudes”.
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1.2.1. Predictions
Two sources of data could adjudicate among these three hypotheses. First, they

make diVerent predictions concerning which numerals might acquire cardinal mean-
ings prior to the acquisition of the counting principles. Enriched parallel individua-
tion is, of course, capacity-limited. So, if enriched parallel individuation is the sole
source of numerical content from which the counting principles are acquired, chil-
dren should only be able to assign cardinal meanings to “one” through “three” or
“four” prior to learning the counting principles. On the other hand, the analog mag-
nitude system has no known upper limit:4 it is the only core system that can represent
the number of individuals in sets comprised of 5 or more, albeit approximately.
Therefore, Wnding that there is no principled limit to the numerals that acquire
numerical meaning as part of the acquisition process would provide strong evidence
that analog magnitudes are recruited in this process, particularly if it involved acquir-
ing numerical meanings for numerals beyond “four”.

A second source of data that would bear on deciding between these hypotheses is
the pattern of variability in children’s use of mapped numerals. Cordes and Gelman
(2005) showed that, in a task tapping the mapping between written numerical sym-
bols and analog magnitudes in adults, scalar variability of numerical estimates can be
found from 1 up. Therefore, the hypothesis that analog magnitudes are the sole basis
of the mappings out of which the counting principles are acquired predicts that the
variability of children’s use of mapped numerals should be scalar from “one” up: i.e.,
as soon as children have mapped numerals to analog magnitudes, they should be able
to produce verbal estimates of the number of individuals in sets within the range of
their mapping (e.g. children who have mapped numerals up to “ten” will be able to
estimate the number of circles in sets of up to about 10 circles), and the standard
deviation of their estimates should be proportional to the mean of their estimates, for
all set sizes from 1 up.

The hypotheses that involve enriched parallel individuation make no clear predic-
tions about the nature of noise in children’s use of the numerals “one” to “four”
because the noise signature of this system has not been studied systematically. Nonethe-
less, we can identify two potential sources of noise in the process of numeral production
envisioned in our enriched parallel individuation model: (1) the establishment and
maintenance of the working memory model, and (2) the comparison of working mem-
ory models to long-term memory models on the basis of one-to-one correspondence.

4 In infancy, the conditions under which one system is deployed often seem to preclude the activation of
the others. First, when using set-based quantiWcation over small sets, infants fail to deploy either analog
magnitudes or parallel individuation (Barner et al., in press). Second, when solving tasks using parallel
individuation, infants fail to represent sets composed of more than three individuals (e.g. infants can repre-
sent three balls in a box but fail to represent four balls; Feigenson & Carey, 2003, 2005), and, when solving
tasks using analog magnitudes, they fail to represent the cardinal value of sets containing fewer than four
individuals (Lipton & Spelke, 2003; Wood & Spelke, 2005; Xu, 2003). However, its not that analog magni-
tudes are not deWned for small sets. For example, Brannon (2002) has shown that 11-month-old infants
can order small set sizes relative to large sets sizes (e.g. 2 < 4 < 8 dots). Since the analog magnitude system is
the only system that can in principle represent both small and large sets, this suggests that analog magni-
tudes are deWned for small sets, from infancy on (see Cordes & Gelman, 2005 and Dehaene, 1997 for
evidence to the same eVect in adults).
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Experimentation suggests that both of these processes are subject to greater error
for larger set sizes. In infancy, using parallel individuation to compare two sets on the
basis of one-to-one correspondence is harder for larger sets. For example, in Feigen-
son and Carey’s (2003) manual search task, 12-month-old infants saw balls hidden in
an opaque box, were allowed to reach in the box to retrieve all but one ball, and were
then given an opportunity to retrieve the remaining ball. To measure whether infants
represented the exact number of balls in the box, Feigenson and Carey compared
how long infants reached for the remaining ball to how long they reached in the box
when it was completely empty. Infants successfully reached longer when the box still
contained a ball as long as there were no more than three balls in the box. This sug-
gests that they solved this task by holding a model of the balls hidden in the box in
the capacity-limited parallel individuation system, and by ending their reaching when
the set of retrieved balls matched the parallel individuation model on the basis of
one-to-one correspondence. However, they succeeded more robustly when 2 balls
were hidden (a comparison of 1 retrieved ball to an expected total of 2 balls) than
when 3 balls were hidden (a 2 vs. 3 comparison), suggesting that matching sets in par-
allel individuation on the basis one-to-one correspondence is more diYcult for larger
sets.

Vogel et al. (2001) showed that, while the adult visual short-term memory can hold
up to four objects in parallel, is not error-free. Close scrutiny of their remarkably reli-
able results suggests that, for tasks involving one to four objects, the ratio of error
rate to set size increases as a function of set size. This is unlike analog magnitudes
where this ratio remains constant. Thus, the enriched parallel individuation hypothe-
sis is consistent with error in children’s use of “one” to “four”, and may even predict
that the ratio of the error in the use of each numeral over the mean set size to which
each is applied should increase.

In sum, these hypotheses make distinct predictions concerning (1) the range of
numerals that acquire numerical meaning (exact or approximate) as part of the
acquisition process, and (2) the nature of the noise in children’s use and compre-
hension of the numerals that are learned as part of the process. To truly test these
predictions, it is necessary to evaluate both of these factors in children who have
not yet acquired the counting principles, and in children who have just done so.
Finding that children acquire numerical meanings for “one” to “four” prior to
acquiring the counting principles, but only map numerals beyond “four” after hav-
ing acquired the counting principles would provide strong evidence in favor of the
enriched parallel individuation alone hypothesis. Evidence of a lack of scalar vari-
ability in children’s use of “one” to “four” both before and after the acquisition of
the counting principles would add further support for this hypothesis. In contrast,
if either of the hypotheses that involve analog magnitudes are correct, then, there
should not be any principled limit to the numerals that can acquire numerical
meaning as children acquire the counting principles. Since the analog magnitude
system is the only core numerical system that can represent the number of individ-
uals in sets of 5 or more (albeit approximately), these hypotheses would receive
particularly strong support in case of evidence that the acquisition process involves
learning approximate numerical meanings for numerals beyond “four”. In case of
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such evidence, the nature of the noise in children’s use of numerals would deter-
mine whether the acquisition process involves analog magnitudes alone or whether
it also involves representations of small sets provided by parallel individuation. If
the former is correct, use of numerals should show scalar variability from “one”
up. If the latter is correct, scalar variability should only obtain for “Wve” and
beyond.

One of the possibilities entertained above – namely, that children could map
numerals beyond “four” onto analog magnitudes after acquiring the counting princi-
ples – may seem odd. Indeed, does not knowledge of the counting principles implicate
knowledge of the mappings between large numerals and analog magnitudes? Not
necessarily. Many studies have shown that exact arithmetic facts (e.g. one-digit addi-
tion facts or multiplication tables) and analog magnitudes are independent represen-
tations of number (e.g. Dehaene & Cohen, 1992; Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999; Lemer, Dehaene, Spelke, & Cohen, 2003; Spelke & Tsivkin, 2001b).
Insofar as exact arithmetic facts are represented in terms of symbols from the count
list (i.e. numerals or Arabic digits), it may be possible to know the meaning of a
numeral qua symbol in the count list without knowing its meaning qua symbol
mapped onto an analog magnitude. Thus, there could be a period during which chil-
dren who can determine what numeral to apply to a large set of objects (e.g. 10) by
counting it, cannot do so if they are prevented from counting and are thereby forced
to rely on the mapping between large numerals and analog magnitudes.

1.3. The nature of the mappings that support the acquisition of the counting principles: 
what is known and what remains to be determined

Many studies have investigated how children acquire meanings for the numerals
in their count list prior to the acquisition of the counting principles. These studies
have consistently found that, prior to mastering the counting principles, children
laboriously learn exact numerical meanings (i.e. meanings whereby each numeral is
applied to one and only number of individuals) for “one”, “two”, “three” and
sometimes “four” in that order (Le Corre et al., 2006; Sarnecka & Gelman, 2004;
Wynn, 1990, 1992). Condry and Spelke (under review) carried out the only previ-
ous study that investigated whether children also created approximate meanings
for the large numerals via mappings to large analog magnitudes prior to acquiring
the counting principles. Children who had not yet acquired the counting principles
were presented with pairs of sets (e.g. 5 sheep and 10 sheep) and were asked to point
to one of the sets (e.g. “Can you point to the ten sheep?” or “the Wve sheep?”). The
pairs of sets were either comprised of a small set (1–4 objects) and a large set (more
than 4) or of two large sets. The ratios of the pairs of sets always were very favor-
able; they never were greater than 0.5, a ratio suYcient for the 6-month-old analog
magnitude system to discriminate numbers of objects (Xu & Spelke, 2000; Xu,
Spelke, & Goddard, 2005). Therefore, if they had mapped large numerals onto ana-
log magnitudes, children should have succeeded on all pairs. Yet, they only suc-
ceeded on pairs involving a small set; all of them failed on pairs exclusively
comprised of large sets.
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These results strongly suggest that children only map “one” through “four” onto
core representations prior to acquiring the counting principles. However, the ques-
tion of the nature of the ontogenetic sources of the counting principles is not yet
resolved, for no study has investigated the nature of the mappings in children who
have just acquired the counting principles. To be sure, some studies did investigate the
mappings in children who knew the counting principles (Duncan & McFarland,
1980; Huntley-Fenner, 2001; Lipton & Spelke, 2005; Sekuler & Mierkiewicz, 1977;
Temple & Posner, 1998) but only did so with children who were at least Wve years old
– i.e. a full 12–18 months older than the age at which most children acquire the count-
ing principles. Likewise, no study has investigated the nature of the noise in numerals
that are mapped onto core representations as part of the acquisition process. Thus,
all three proposals are still consistent with available data.

1.4. The current studies

The completion of the investigation of the nature of the sources of the counting
principles hinges on the answer to two questions: (1) whether children map numerals
beyond “four” as part of the acquisition of the counting principles, and (2) whether
children’s use of mapped numerals shows scalar variability. The current studies take
on both of these questions. We will proceed in two steps. We will Wrst categorize chil-
dren into “knower-levels” on the basis of the numerals for which they have learned
exact numerical meanings. Children who have learned an exact numerical meaning
only for “one” will be referred to as “one”-knowers, those who have only learned
exact meanings for “one” and “two” as “two”-knowers, and so on. Because they have
only acquired exact meanings for a subset of their count list (e.g. many “one”-know-
ers can recite the count list up to “ten”), children who have not yet acquired the
counting principles will be referred to as “subset-knowers”. Children who know the
counting principles will be referred to as “CP-knowers”, where “CP” stands for
“counting principles”.

We will then analyze children’s performance on a verbal numerical estimation
task. In this task, children were simply shown sets of 1–10 individuals and were asked
to provide estimates of the number of individuals in each set without counting. Each
set size was presented to each child several times so that we obtained a mean estimate
and a standard deviation for each set size for each child. These data will allow us to
address the Wrst critical question, namely whether the exact knower-levels exhaust the
range of numerals mapped onto core representations in the acquisition of the count-
ing principles (i.e. they only learn meanings for “one” to “three” or “four”) or
whether the acquisition process also involves the creation of approximate meanings
for large numerals via mappings to large analog magnitudes. Finding that, for some
CP-knowers, the mean of estimates increases from 1 to 4 but remains constant for all
larger set sizes would provide strong evidence that the acquisition process only
involves mapping “one” to “four” onto core representations. On the other hand,
Wnding that, by the time they are CP-knowers, all children provide larger estimates
for larger set sizes for all set sizes tested would provide strong evidence that children
map numerals beyond “four” onto analog magnitudes in the acquisition process.
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These data will also allow us to calculate the coeYcient of variation – i.e. the ratio of
the standard deviation over the mean – for children’s estimates of each set size. Anal-
ysis of this coeYcient will allow us to address the second critical question, namely
whether children’s use of mapped numerals shows the tell-tale signature of the ana-
log magnitude system – i.e. scalar variability.

2. Experiment 1

In this Experiment, children’s knower-levels were assessed with Wynn’s (1990,
1992) Give-a-Number task. The verbal numerical estimation task, dubbed “Fast
Cards,” required children to estimate the number of circles in arrays of 1–10 cir-
cles that were presented too quickly (1 s) to be counted. We also included a count-
ing task to assess whether children’s count list was long enough in principle to
allow them to at least provide rough verbal estimates of the sizes of large sets. All
children were also presented with pairs of sets of circles (e.g. 6 vs. 10, and 8 vs. 10)
and were asked to point to the set with more circles without counting. This
allowed us to determine whether children’s performance on the verbal numerical
estimation task was limited by the resolution of their non-verbal core representa-
tions of number.

2.1. Method

2.1.1. Participants
One hundred and sixteen 3-, 4-, and 5-year-olds participated in Experiment 1

(mean ageD 3 years; 11 months, rangeD3.0–5.7). All were Xuent English speakers
from the Boston area. The majority of the children were from middle-class back-
grounds, and most were Caucasian although a small number of Asian, African
American and Hispanic children participated. Participants were tested either at a uni-
versity child development laboratory or at local day care centers or nursery schools.
The families of participants tested in the laboratory were identiWed through commer-
cially available lists and were initially recruited by letter. All children tested at the lab
were accompanied by a caregiver. Children received a small gift for their participa-
tion and caregivers who brought them to the laboratory received reimbursement for
their travel expenses. Testing in day care centers took place in rooms that were part
of the center (e.g., staV rooms); day care centers were given children’s books in token
appreciation of their participation. An additional 10 children (mean ageD 3.6,
rangeD3.0–3.9) participated in Experiment 1 but could not be included in the data
analyses. One of them failed to provide data for each of the set sizes tested in the Fast
Cards task (nD1) and the others had count lists that were too short (nD 9; see results
of count list elicitation task).

2.1.2. Materials
2.1.2.1. Count list elicitation task. The materials for this task consisted of 10 small
plastic animals (elephants or gorillas) presented in a single row.
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2.1.2.2. Give a number. The materials for this task consisted of three sets of 10–16
small plastic animals (Wsh, elephants, gorillas). The toys in each set were identical, or
only diVered in one feature (e.g. all Wsh had the same shape and size but some were
brown and some were black). Each set was presented in a separate plastic container.

2.1.2.3. Fast cards. The materials consisted of thirty-eight 11�£ 14� white cardboard
cards with black circles on them. The circles were printed on white 8.5�£ 11� sheets,
which were pasted on the cardboard cards, and were laminated with transparent
plastic. Set sizes ranged from 1 to 15 for the modeling phase and from 1 to 10 for the
test phase.

2.1.2.4. Non-verbal ordinal judgments. The cards used for this task had the same
properties as the cards used in Fast Cards, except that there were a total of twenty-
four, and all cards were green.

2.1.3. Procedure
Children were tested in one of two orders: Fast Cards before the Non-Verbal

Ordinal (NVO) task (nD63 children) or NVO before Fast Cards (nD 54). To avoid
framing the Fast Cards and NVO tasks as counting tasks, our two counting tasks –
Give a Number and count list elicitation – were always done last, with Give a Num-
ber always administered before count list elicitation.

2.1.3.1. Count list elicitation. Children were presented with a single row of 10 small
toy animals and were asked to count them. If their counting was grossly wrong, the
experimenter asked children to count the set one more time more slowly, and assisted
their counting by pointing to each object as they counted. Objects were used to elicit
children’s count list because simply asking them to count aloud may not have
allowed us to determine if they could at least count to “ten”.

2.1.3.2. Give a number. To begin, the experimenter placed a small bowl Wlled with
plastic toys on a table in front of the child and asked, “Could you take one elephant
out of the bowl and put it on the table?” After the initial demonstration, the experi-
menter proceeded to ask for larger numbers of toys. On trials where the experimenter
asked for 2 or more toys, children were always asked, “Can you count and make sure
this is X?” (where X was the number requested) after they had given a set of objects,
regardless of how many they had given. If children counted and the last number of
their count did not match the number of objects requested, the experimenter then
probed with “But I wanted X elephants – can you Wx it so that there are X?”

The highest number on which children were tested was determined by a titration
method modeled after (Wynn, 1992). If children succeeded at giving X dinosaurs, the
experimenter requested X + 1 on the next trial. If they then failed to give X + 1 dino-
saurs, X was requested on the subsequent trial. Children were tested up to the small-
est number that they could not give correctly at least two out of three times (thus,
“one”-knowers were tested on 1 and 2, “two”-knowers on 1, 2, and 3, etcƒ) or up to
6. Following Wynn (1990, 1992), children were allowed a single counting error. Thus,
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they could be credited with having given the correct number even when they had
actually given X§ 1, if they used counting to produce the set.

2.1.3.3. Fast cards. To ensure that children understood that they were to estimate
without counting, and to illustrate estimating the number of circles in large sets, the
task was Wrst modeled by the experimenter. Children sat facing the experimenter
about 1 m away from her. Before proceeding to model the task, the experimenter told
children that they would see cards being Xashed very quickly, and that she would
guess how many circles were on the card as fast as she could. To encourage children
to participate and to deter them from feeling like they had to count, the experimenter
emphasized that guesses didn’t need to be perfect, and that all that really mattered in
the game was “saying what number it looks like” or “saying what number you think
of when you see the circles”. The experimenter then proceeded to simulate guessing
the number of circles in arrays of 1 through 15 circles, presented in one of two
pseudo-random orders. One order began with 2 and ended with 10, and the other
began with 10 and ended with 2. The experimenter simulated guessing by saying
things like “Hmm. I’m not sure what this is but it looks like seven circles”, but actu-
ally always said the correct answer. The cards in the modeling phase were not always
Xashed quickly but were sometimes presented for a longer time to make sure that
children had clearly registered both the set of circles and the experimenter’s response.

The total surface area of the sets of circles (i.e. the sum of the individual areas of
the circles comprising a set) presented in the modeling phase was negatively corre-
lated with the number of circles in the set. The diameter of individual circles varied
between 1.2 cm (for the set of 15) and 5.5 cm (for the set of 1).

Four decks of cards were used for the test phase. Each deck contained sets of 1, 2,
3, 4, 6, 8 and 10 circles. At the beginning of each test trial, the experimenter held the
card facing herself, attracted the child’s attention by saying “Ready?”, and then said
“Go!” as she Xipped the card over so that it would face the child for about 1 s. If chil-
dren refused to produce an answer, the card was presented again for a longer period
of time, and children were coaxed to make a guess while looking at the card. If chil-
dren still did not answer, the experimenter told the child how many circles were on
the card (e.g. “I think that was six circles”). Trials where cards were re-presented were
only used in the hope of helping children feel more comfortable with the task, and
were excluded from the Wnal analyses.

In two of the decks of test cards, total surface area remained constant across set
sizes, and in the other two, total surface area was negatively correlated with set size.
For the sets with total area remaining constant, the diameter of individual circles var-
ied between 2.0 cm (for the set of 10) and 6.3 cm (for the set of 1). For the sets with
total area negatively correlated with number, the diameter of individual circles varied
between 1.5 cm (for the set of 10) and 5.5 cm (for the set of 1). The conWguration of
sets in the test phase was such that all sets comprised of the same number of circles
had diVerent conWgurations (e.g. the conWguration of each of the four sets of 6 circles
was diVerent from that of the other sets of 6), and such that sets comprised of large
numbers of circles (i.e. 6, 8, or 10) could not be easily broken into smaller perceptual
groups (e.g. none of the sets of 6 consisted of two parallel rows of 3 circles).
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The sets were presented in one of two pseudo-random orders. In one, the Wrst test
card showed a set within the range of parallel individuation (3 circles); in the other,
the Wrst test card was within the analog magnitude range (6 circles). In both orders,
decks in which the total circle surface area remained constant and those in which it
was negatively correlated with number were alternated, with the Wrst deck being one
in which total surface area remained constant. Repetitions of the same number were
always separated by at least two trials. When the cards were presented to children,
there was no noticeable pause between card decks. Thus, children experienced the
task as one deck of 28 cards.

2.1.3.4. Non-verbal ordinal. This task began with the experimenter telling children
that they would be shown cards with circles, and that they would have to Wnd “the
card with more circles”. Then, she placed two cards on a table between the child and
herself and asked “Which card has more circles?”. After children had clearly indi-
cated an answer, the experimenter moved on to the next trial and asked the same
question. After several trials, the experimenter sometimes no longer asked the ques-
tion as children sometimes pointed to the card with the larger number of circles
before she had asked them to do it.

We wanted this task to be a non-verbal measure of the availability and
accuracy of children’s analog magnitudes. Thus, if children tried to count, they
were discouraged from doing so (e.g. the experimenter said “No counting!” or
“Try to do it very quickly without counting. It’s more fun that way!”). Fortu-
nately, very few children ever attempted to count, and those who did were easily
discouraged from doing so. Trials on which children did count were discarded.
Moreover, we wanted the task to tap children’s capacity to spontaneously repre-
sent set sizes with magnitudes. Thus, they were never given feedback. The experi-
menter simply praised children on almost every trial regardless of the accuracy of
their choices.

The pairs tested were: 2 vs. 3, 2 vs. 6, 6 vs. 10, and 8 vs. 10. Each pair was presented
three times, with the conWguration of the circles in each set of the pair being as diVer-
ent as possible each time. For two of the exemplars of each number comparison, the
more numerous set had a smaller cumulative surface area than did the less numerous
set; for the third exemplar, all circles in both sets were the same size, so the more
numerous set also had a larger cumulative surface area. For the trials where total sur-
face area did not predict number, the diameter of the circles varied between 1.5 and
3.5 cm. For trials in which circles were the same size in both sets, all circles had a
4.5 cm diameter.

The pairs were presented in two pseudo-random orders. In both orders, the same
comparison pair never occurred on two consecutive trials, and the correct answer
was never on the same side any more than two trials in a row.

2.2. Results

2.2.1. Knower levels (from give-a-number)
To be considered an “n” knower, children had to:
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(1) Give n objects at least 67% of the time when asked for that number; and
(2) Give n objects no more than half as often when asked for a diVerent number.

For example, if a child always gave two objects when asked for “two” but gave two
objects on more than half of the trials on which she was asked for other numbers, she
would not be considered to know “two”. Children who succeeded with all numbers
requested (i.e., children who could give at least up to “six”) were classiWed as CP-know-
ers. Other work (Le Corre et al., 2006; Wynn, 1990, 1992) demonstrates that this crite-
rion for classifying children as CP-knowers captures all and only children who
understand how counting represents the positive integers. Table 1 displays the mean
age and the mean highest numeral in the count list of the children in each knower-level.

2.2.2. Count list elicitation
To be sure that children’s performance on Fast Cards would not be limited

by their counting range, we only wanted to include children who could at least
count to “ten”. While most of the children in our sample (n D 104) could at least
count to “ten”, some could not. Thus, in order to use as much of our sample as
possible, we also included “one”-knowers who could only count to “eight” (n D 5),
and “two”-knowers who could count only count to “nine” (nD 7).

2.2.3. Fast cards
Although a few children attempted to count, all were easily prompted to guess

without counting: more than 95% produced numerals without counting on at least
75% of trials, and all produced at least one numeral for every set size. To Wlter out
uninterpretable noise, numerals greater than “thirty” were excluded from the analy-
sis. Only 4 children (one “two”-knower and three “three”-knowers) ever produced
numerals this large.

2.2.3.1. Assessment of the mapping between large numerals (“Wve” and beyond) and 
large analog magnitudes. To determine whether children had mapped large numerals
onto large analog magnitudes, we calculated the average value of the numerals each
child produced for each set size. For the sake of brevity, we will use the term

Table 1
Age, count list length and knower-levels of participants in Experiment 1

a Ages are in years and months (years; months).
b Children’s count list length was determined by their longest count; e.g. the count list length for a child

who once counted to “Wve” and once to “eight” would be 8.

Levels n Agea Count list lengthb

Mean (SE) Range Mean (SE) Range

“One”-knowers 6 3.9 (1.6) 3.0–4.4 9.8 (0.3) 8–12
“Two”-knowers 14 3.8 (1.0) 3.2–4.4 10.3 (0.4) 9–11
“Three”-knowers 18 3.7 (0.85) 3.0–4.0 10.8 (0.3) 10–12
“Four”-knowers 7 3.6 (1.3) 3.0–4.0 10.1 (0.2) 10–11
CP-knowers 71 4.4 (1.0) 3.2–5.7 10.8 (0.3) 10–16
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“function” as a shorthand for “average numeral produced as a function of set size”.
We then calculated the average function for each knower-level, where knower-level
was determined by performance on Give-a-number. If children had mapped large
numerals onto large magnitudes, they should have applied larger numerals to larger
set sizes when they were presented with large set sizes (i.e. 6, 8, and 10). Therefore, the
slope of their function in the large set size range (henceforth, their “6–10 slope”)
should be greater than 0. The analyses below Wrst test the 6–10 slope of subset-know-
ers’ functions against 0 and then examine whether all CP-knowers had functions with
positive 6–10 slopes.

Subset-knowers. Because of the small size of the groups of “one”-knowers
and “four”-knowers, we combined the function for “one”-knowers with that of
“two”-knowers and we combined the function for “three”-knowers with that of
“four”-knowers. These combinations were justiWed by analyses that showed that
the functions of “one”-knowers did not diVer from those of “two”-knowers, and
that the functions of “three”-knowers did not diVer from those of “four”-knowers.
For “one”- and “two”-knowers, an ANOVA assessed the eVects of knower-level
(“one-” vs. “two-”) and set size (1, 2, 3, 4, 6, 8, or 10) on the average numeral pro-
duced. There was no eVect of knower level, F (1, 18)D 1.2, ns, and no interaction
between knower-level and set size, F (2, 39)D 2.2, ns. A comparable ANOVA exam-
ining the diVerence between “three-” and “four-” knowers also found no eVect of
knower level, F (1, 23)D 0.38, ns, and no interaction between knower-level and set
size F (2, 59)D 0.87, ns. In each ANOVA, the only signiWcant eVect was that of set
size (“one”-knowers vs. “two”-knowers: F (2,39)D 15.0, p < .001; “three”-knowers
vs. “four”-knowers: F (2, 59)D 21.6, p < .001). The functions for the two composite
groups are shown in Fig. 1.

As can be seen in Fig. 1, the 6–10 slope for “one”- and “two”-knowers’ function
(MD0.11, SED0.10) was not signiWcantly diVerent from 0, t (22)D 1.12, ns, In fact,
the shape of “one”- and “two”-knowers’ function suggests that they had barely
mapped any of the numerals beyond their Give a Number knower-level. They failed
to apply larger numerals to larger set sizes when they were presented with sets of 3 or
more circles – the 3–10 slope of their function (MD 0.04, SED0.04) did not diVer

Fig. 1. Average numeral by set size functions for subset-knowers. “One”- and “two”-knowers were com-
bined because their functions were not signiWcantly diVerent from each other as were “three”- and “four”-
knowers.
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from 0, t (22)D0.95, ns. The 6–10 slope of “three”- and “four”-knowers’ function
(MD0.03, SED 0.08) was not signiWcantly diVerent from 0 either, t (28)D0.35, ns (see
Fig. 1). Thus, all subset-knowers failed to apply larger numerals to larger set sizes
when they were presented with sets of 6 or more circles.

One aspect of “three”- and “four”-knowers’ function was not consistent with their
Give a Number knower-level. Given their performance on Give a Number, “three”-
knowers should have accurately estimated the size of sets of up to 3 circles and
“four”-knowers should have accurately estimated the size of sets of up to 4 circles.
Contrary to this prediction, “three”- and “four”-knowers’ average estimate of sets of
3 (MD5.22, SED0.53) and 4 (MD 6.18, SED 0.58) were quite oV the mark. Insofar
as it shows that their estimates of 3 and 4 were noisy, this may seem to suggest that
these children used analog magnitudes to estimate these set sizes. However, evidence
of noise isn’t suYcient to show that children used analog magnitudes. One must also
show that this noise is scalar, a question we will address below (see “scalar variabil-
ity” section).

“Three”- and “four”-knowers’ diYculties with estimating suggests that Fast Cards
underestimated their knowledge of “three” and “four”. Thus, the group’s failure to
estimate large set sizes may have been caused by non-numerical aspects of the task
(e.g. the rate of presentation of the sets) rather than by their lack of knowledge of
mappings between large numerals and magnitudes. However, some “three”-knowers
could accurately estimate sets of up to 3 (i.e. their mean estimate for each of these set
sizes was within§0.5 of the target; nD7) and some “four”-knowers could accurately
estimate sets of up to 4 (nD 2). The 6–10 slope for this group of 9 “three”- and
“four”-knowers (MD¡0.23, SED 0.14) was not positive either (indeed it was nega-
tive), and it was not signiWcantly diVerent from 0, t (8)D 1.69. This suggests that
“three”- and “four”-knowers’ failure to estimate large set sizes was not exclusively
due to task diYculty.

CP-knowers. To determine whether all CP-knowers had mapped large numerals
onto large magnitudes, we analyzed the distribution of individual 6–10 slopes for 71
CP-knowers (Fig. 2). If children have mapped large numerals onto large magnitudes
by the time they become CP-knowers, the distribution of their 6–10 slopes should
have had a mean that was greater than 0 and it should have been a single normal dis-
tribution centered around this mean. While the mean of CP-knowers’ 6–10 slopes
(MD0.56, SED 0.07) was signiWcantly greater than 0, t (71)D 7.60, p < .001, it clearly
wasn’t the center of the distribution of all 6–10 slopes. Indeed, rather than showing a
single peak around 0.56, the distribution had two prominent peaks: one near 0, and
one near 1.1. A Kolmogorov–Smirnov test of normality with Lilliefors correction
conWrmed that the shape of our distribution was signiWcantly diVerent from a single
normal curve, DD0.11, p < .05. These properties of the distribution of CP-knowers’
6–10 slopes strongly suggest that the group of CP-knowers was actually composed of
two groups: CP-knowers who hadn’t mapped numerals beyond “four” onto magni-
tudes (i.e. CP-knowers with 6–10 slopes distributed around 0) and CP-knowers who
had mapped numerals beyond “four” onto magnitudes (i.e. CP-knowers with 6–10
slopes distributed around 1). Hereafter, we will refer to the Wrst group as “CP non-
mappers” and to the latter as “CP mappers”.
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In light of these results, we plotted separate functions for CP mappers and non-
mappers (see Fig. 3). As this is the Wrst report of the existence of CP non-mappers, we
chose a relatively small 6–10 slope (0.3) as our cut-oV between CP non-mappers and
mappers. This ensured that the function for non-mappers would almost exclusively
consist of data from children who hadn’t mapped their large numerals onto magni-
tudes. Given this criterion, there were 30 CP non-mappers and 41 mappers. If these

Fig. 2. Distribution of the slopes of the linear Wts of CP-knowers’ average numeral by set size functions for
set sizes between 6 and 10. Tick Marks on the x-axis represent the limits of each histogram bar; e.g. the
leftmost bar represents the number of CP-knowers with 6–10 slopes between ¡1.1. and ¡0.9.

Fig. 3. Average numeral by set size functions for CP non-mappers (solid line) and CP mappers (dashed
line). CP non-mappers were CP-knowers who had functions with slopes that were less than 0.3 in the
unambiguous magnitude range (6–10); CP mappers had 6–10 slopes that were greater than 0.3.
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two groups really reXect two stages of the acquisition of numeral meanings, the non-
mappers should be younger than the mappers. As predicted, the non-mappers (mean
ageD4;1; range: 3.2–5.6) were signiWcantly younger than the mappers (mean
ageD4;6; range: 3.5–5.7), t (70)D2.65, p < .05. More generally, amongst CP-knowers,
age and 6–10 slope were positively correlated with each other, rD .27, p < .05.

As can be seen in Fig. 3, the functions for CP non-mappers and CP mappers were
qualitatively diVerent in the 6–10 range. By deWnition, the average 6–10 slope of CP
non-mappers was equal to 0 (MD¡0.02, SED 0.05). In sharp contrast, the average
6–10 slope of CP-mappers’ function was equal to 1 (MD1.0, SED0.06). However,
the 1–4 slopes of CP non-mappers’ (MD1.27, SED0.15) and CP-mappers’
(MD1.07, SED 0.03) functions were not signiWcantly diVerent from each other,
t (30)D1.32, ns; both were nearly equal to 1. Indeed, Fig. 3 shows that the two func-
tions were identical in the small set size range (1–4). These properties of the two func-
tions suggest that, while both groups had mapped “one” to “four” onto core
representations of small sets, CP-mappers were the only ones who had mapped
numerals beyond “four” onto analog magnitudes.

2.2.3.2. Analyses of individual numerals for CP non-mappers and CP mappers. Our
data suggest that children only learn numerical meanings for “one” to “four” in the
process of acquiring the counting principles. However, since children were not tested
on sets of 5, it’s possible that they also learn a numerical meaning for “Wve” as part of
the acquisition process, but that our analyses of the average numeral by set size func-
tions missed this. To address this problem, we analyzed how CP non-mappers and
CP mappers used each individual numeral as a function of set size. Finding that CP
non-mappers applied “Wve” (and all other numerals beyond it) equally to all large set
sizes would conWrm that children do not learn numerical meanings for numerals
beyond “four” as part of the acquisition process.

Distributions of application of each numeral as a function of set size were com-
puted for CP non-mappers and CP-mappers.5 Individual distributions were com-
puted for each numeral between “one” and “six”. To simplify the exploration of
these data, the distributions for “seven” and “eight” were added together into a sin-
gle distribution, as were those for “nine” and “ten”, and for all numerals beyond
“ten”. These distributions are reported in Fig. 4. To obtain each distribution, we cal-
culated the probability of application of each numeral to each set size as follows: we
divided the total number of times each numeral was applied to a given set size by the
total number of trials with this set size, and calculated this probability for each set
size. For example, to compute the distribution of “one” for CP non-mappers, we

5 These distributions were also obtained for subset-knowers. While we do not report them here because
they are not directly relevant to our central concerns, they can be consulted at http://www.wjh.harvard.
edu/~lds/subsetdists.html. In short, these distributions conWrm that subset-knowers had not mapped any
numerals beyond “four” onto analog magnitudes. Moreover, they show that subset-knowers’ performance
on Fast Cards was qualitatively consistent with their Give a Number knower-level; e.g. “one”-knowers
had a peaked distribution for “one”, “two”-knowers had peaked distributions for “one”, and “two”, etcƒ
This suggests that Fast Cards provided a sensible assessment of children’s knowledge of the numerical
meaning of the numerals in their count list.

http://www.wjh.harvard.edu/~lds/subsetdists.html
http://www.wjh.harvard.edu/~lds/subsetdists.html
http://www.wjh.harvard.edu/~lds/subsetdists.html
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added all the times CP non-mappers had applied “one” to sets of 1, divided this num-
ber by the total number of times they had been presented with 1 circle, and repeated
this procedure for all other set sizes. Since all possible numerals (i.e. from “one” to
“beyond ten”) were counted in this analysis, the probabilities of application added up
to 1 for each set size.

The shape of the distributions in Fig. 4 show that both CP mappers and non-map-
pers had mapped “one” to “four” onto core representations; i.e. for each group, the
distributions for “one”, “two”, “three”, and “four” had clear peaks over set sizes of 1,
2, 3, and 4 respectively. Critically, they also suggest that CP mappers were the only
ones who had mapped any numerals beyond “four” onto analog magnitudes; i.e. the
distributions for numerals beyond “four” only showed peaks over large set sizes in
CP mappers. To verify this impression, we analyzed how each group applied large
numerals to large set sizes with one-way ANOVAs with large set size (6, 8, and 10) as
a repeated measure and probability of application as a dependent variable. Whereas
CP mappers showed main eVects of large set size for all numerals except “six” (ps for
numerals other than “six” all <.005; for “six”, ns), CP non-mappers did not show any
(all ps > .07). This strongly suggests that CP mappers were the only ones who had
mapped any numerals beyond “four” onto analog magnitudes.

2.2.3.3. Scalar variability. One of the signs that numerals are mapped onto analog
magnitudes is that their use in a verbal estimation task such as Fast Cards shows

Fig. 4. Numeral distributions for CP non-mappers and CP mappers. Each distribution represents the
probability of using a given numeral as a function of set size. For example, for sets of 1 object, the distri-
bution for “one” shows how often children applied “one” to this set size out of all trials with this set size.
Figures in the left column show the distributions for “one” to “four” (“one”:  “two”:  “three”: 
“four”: ). Figures in the right column show the distributions for “Wve” ( ), “six” ( ), “seven” and
“eight” ( ); “nine” and “ten” ( ); and all numerals beyond “ten” ( ). The distributions for “seven”
and “eight” were added together to simplify the Wgures as were the distributions for “nine” and “ten” and
the distributions for numerals greater than “ten”.
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scalar variability (e.g. Whalen et al., 1999). Variability is scalar when the ratio of the
standard deviation over the mean (the “coeYcient of variation” or COV) is the same
for each set size. Here, we examine children’s COVs for two reasons. First, we estab-
lish that children who could produce numerical estimates of large set sizes – i.e. CP-
mappers – did so by relying on analog magnitudes. CP mappers’ estimates of large
set sizes did show scalar variability; a one-way repeated measures ANOVA of their
COVs for large set sizes (6, 8, and 10) showed no eVect of large set size, F (2,78)D1.55,
ns (see Table 2).6 This strongly suggests that CP mappers used mappings between
large numerals and large analog magnitudes to produce verbal estimates of the sizes
of large sets.

Second, we used COVs to examine what core representations support the numeri-
cal meanings of “one” to “four”. If the acquisition of the counting principles involves
mapping “one” to “four” onto analog magnitudes alone, the COV for estimates of
the sizes of sets of 1 to 4 should be constant by the time children have learned numer-
ical meanings for these numerals; i.e. these COVs should be constant for “four”-
knowers, CP non-mappers, and CP-mappers. Moreover, in children who have
mapped large numerals onto analog magnitudes – i.e. CP mappers – the COV for
small set sizes should be the same as that for large set sizes.

One-way ANOVAs with COV as the dependent measure and small set size (1–4)
as a repeated measure showed that the COVs for small set sizes were not constant but
rather increased signiWcantly (see Table 2) in “four”-knowers, F (1,7)D 6.69, p < .05,
CP non-mappers, F (3,87)D15.65, p < .001, and CP mappers, F (1,41)D15.62, p < .001.
Moreover, for CP-mappers, the average COV for small sets (MD .03; SED .01) was
signiWcantly smaller than that for large sets (MD .21; SED .02), t (39)D10.7, p < .001.
This diVerence was not solely due to drastically smaller variance in CP-mappers’ esti-
mates of 1 and 2; the COVs for 3 (MD .01, SED .01) and 4 (MD .12, SED .03) were
both signiWcantly smaller than the average COV for large sets (both t’s > 3.3, both
p’s < .005).

6 Table 2 does not display the COVs for large numerals for CP-non-mappers nor subset-knowers, be-
cause these children used numerals randomly for set sizes of 6 or larger. Because these children showed no
evidence of having mapped large numerals onto any non-linguistic number representation system, it does
not make sense to explore the source of noise in their estimates.

Table 2
Mean coeYcients of variation (COVs) for “four”-knowers, CP non-mappers, and CP mappers

Note: The coeYcients of variation (COVs) in this table were computed as the ratio of the standard devia-
tion of estimates over the mean of estimates for each given set size. The standard error for each COV is
indicated in parentheses. “Four”-knowers’ and CP non-mappers’ COVs for large numerals were not com-
puted because these children could not estimate the numerical size of large sets.

Knower-level Set size

1 2 3 4 6 8 10

“Four”-knowers 0 (0) 0 (0) 0.41 (.16) 0.40 (.14) – – –
CP non-mappers 0 (0) 0.02 (.02) 0.14 (.05) 0.25 (.04) – – –
CP mappers 0 (0) 0 (0) 0.01 (.01) 0.12 (.03) 0.22 (.03) 0.24 (.03) 0.18 (.02)
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These results strongly suggest that children do not map “one” to “four” onto ana-
log magnitudes alone to acquire the counting principles. To be clear, the small size of
the noise in children’s estimates of small set sizes is not what contradicts the “analog
magnitudes alone” hypothesis. Indeed, since scalar variability predicts that noise
should be smallest for small set sizes, the analog magnitudes alone hypothesis could
potentially be consistent with little noise in estimates of small set sizes. The reason
why these results are not consistent with this hypothesis is that they show that, for
small set sizes, noise was not proportional to the mean of estimates. In other words,
they show that, for small set sizes, variability (as measured by the standard deviation)
was not scalar. Since scalar variability is the signature of absolute number estimation
based on the analog magnitude system, this result poses serious problems for any
view on which “one” to “four” are mapped onto analog magnitudes alone.

It is important to note that it would have been possible to observe scalar variability
in the small set range. Cordes and Gelman (2005) have found that, in adults, the vari-
ability of numerical estimates produced without counting is scalar from 1 up. There-
fore, despite the small size in the error of estimates of small sets, it is possible to Wnd
evidence of scalar variability from 1 up. Also, CP-mappers’ average COV for large set
sizes (0.21) was almost identical to the average COV (0.23) reported by Huntley-Fenner
(2001) for 5- to 7-year-olds’ estimates of large sets and to that reported by Cordes and
Gelman (2005) for adults (about 0.2). This convergence across studies and ages suggests
that the mean COV of CP-mappers’ estimates of large set sizes is a valid index of what
variability is like when analog magnitudes are used to estimate the numerical size of a
set. Therefore, we can safely extrapolate that, if variability had been scalar, children’s
COV for small set sizes should also have been equal to 0.2 at least by the time they had
become CP-mappers. As reported above, this was not the case. CP-mappers’ COVs for
sets of 1–4 were all smaller than 0.2, and CP-mappers’ and “four”-knowers’ COVs also
departed from that value for most small set sizes (see Table 2). Thus, the analysis of the
variability of children’s estimates strongly suggests that children relied on some repre-
sentation system other than or in addition to analog magnitudes to estimate small set
sizes. But what other representational system?

Only two other representational systems could have contributed to children’s esti-
mates of the cardinal values of small set sizes: enriched parallel individuation and
counting. Since sets were only presented for 1 s, our task was not conducive to count-
ing. Yet, this presentation time may not have been short enough to prevent children
from counting, particularly for small set sizes. Two aspects of our results suggest that
counting was not the source of children’s estimates of small set sizes. First, since they
had not yet acquired the counting principles, it is highly unlikely that “four”-knowers
generated their estimates of small set sizes by counting. Second, Cordes and Gelman
(2005) showed that the variability due to errors produced while counting is not scalar
but binomial, even when counting small set sizes. When variability is binomial, the
COV decreases as set sizes grow larger. The COVs for CP non-mappers’ and CP-
mappers’ did not follow this trend. Rather, their COVs for small set sizes increased
signiWcantly as a function of set size (see Table 2). Therefore, these results suggest
that small sets represented via parallel individuation must be part of the resources
drawn upon to provide the meanings of “one” to “four”.
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2.2.4. Non-verbal ordinal (NVO)
CP mappers were the only ones who could estimate the numerical size of large

sets. This suggests that they were the only ones who had mapped large numerals onto
analog magnitudes. Alternatively, it could be that other children (e.g. CP non-map-
pers) had also mapped large numerals onto large analog magnitudes, but that CP
mappers were the only ones who could deploy these mappings in the Fast Cards task
because their analog magnitude system was signiWcantly more acute than that of chil-
dren in all the other groups. To decide between these alternatives, we tested children
on a non-verbal ordinal task in which they were presented with pairs of sets of circles
(2 vs. 3, 2 vs. 6, 6 vs. 10, and 8 vs. 10) and were asked to point to the set with the larg-
est set of circles. If children’s performance on verbal numerical estimation was con-
trolled by non-verbal aspects of their numerical representations, then CP-mappers’
non-verbal ordinal judgments should have been more accurate than all other groups,
particularly on trials involving pairs of large sets (i.e. 6 vs. 10, and 8 vs. 10).

We examined the average accuracy of children’s non-verbal ordinal judgments as
a function of their knower-level (see Fig. 5)7 “Three”- and “four”-knowers’ results
were plotted together because they were not signiWcantly diVerent from each other
(see below) and because there were so few “four”-knowers. To be sure that children’s
answers were not based on counting, we excluded all trials in which children showed
any sign of attempting to count either by counting out loud, or by engaging in serial
pointing. Very few attempted to count at all, and those who did only tried to count
on the Wrst one or two trials, and were easily discouraged from doing so on further
trials.

A 6£ 4£ 2£ 2 ANOVA with Pair and Area as repeated measures examined chil-
dren’s performance (proportion correct) as a function of Knower-Level (“one”-
knowers, “two”-knowers’, “three”-knowers, “four”-knowers, CP non-mappers, CP
mappers), Pair (2 vs. 3, 2 vs. 6, 6 vs. 10, 8 vs. 10), Area (negatively correlated with set
size, positively correlated with set size), and Order (order 1, order 2). The main eVect
of Knower-Level was signiWcant, F (5, 103)D11.4, p < .001. No other eVects were sig-
niWcant. Post-hoc tests (Tukey’s HSD) of the eVect of Knower-Level revealed that
CP-mappers were signiWcantly more accurate than all other groups (all p’s < .05),
except CP non-mappers. Moreover, CP non-mappers were more accurate than
“three”-knowers and “one”-knowers (both p’s < .05), and “two”-knowers were mar-
ginally more accurate than “one”-knowers (pD .05). Thus, to a Wrst approximation,
CP-mappers and non-mappers were not diVerent from each other, and were both bet-
ter than subset-knowers. Subset-knowers were not diVerent from each other, except
for “one”-knowers who were worse than “two”-knowers.

To determine whether the diVerences between knower-levels were qualitative (e.g.
CP-mappers were the only ones who could discriminate the pairs) or quantitative
(e.g. all groups could discriminate all pairs, but CP-mappers and CP non-mappers
did better than the others), each knower-level’s performance was tested against
chance for each pair. All groups except the “one”-knowers performed above chance

7 One “two”-knower had to be dropped because he showed a clear side-bias.
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on every comparison pair (all t’s > 1.98, all p’s < .05, 1-tailed); the “one”-knowers
were at chance on all four comparison pairs (all t’s < 1.3, all p’s > .25).

Finally, we analyzed “three”-knowers’ and CP non-mappers’ reaction times in the
non-verbal ordinal task to determine whether these children failed to estimate the
sizes of large sets because the presentation times in Fast Cards were too short to
allow them to form distinct representations of large set sizes. Reaction time data were
collected for the 6 vs. 10 and 8 vs. 10 pairs for Wve randomly chosen “three”-knowers
and Wve randomly chosen CP non-mappers. Reaction times were calculated from the

Fig. 5. Accuracy (in percent correct) of children’s non-verbal judgments as a function of comparison type
(2 vs. 3, 2 vs. 6, 6 vs. 10, 8 vs. 10) and knower-level.
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moment the experimenter set the cards on the table to the moment the child pointed
to one of the sets, and they were only calculated for trials with correct answers. On 6
vs. 10, “three”-knowers took an average of 1.8 s (SED0.11) to respond, and CP non-
mappers took 2.0 s (SED0.19). On 8 vs. 10, “three”-knowers took an average of 2.0 s
(SED 0.18) to respond, and CP non-mappers took 2.8 s (SED 0.60). A 2£ 2 ANOVA
on reaction times with comparison type as a repeated measure and knower-level as a
between-subjects factor showed no eVect of comparison type, F (1,8)D2.22, ns, no
eVect of knower-level, F (1,8)D2.36, ns, and no interaction F (1,8)D 0.36, ns. Thus, on
average, a total of 2.15 s per comparison was all that was required to encode the num-
ber of circles in each set, compare them, and plan and execute a response. This
strongly suggests that the presentation time in Fast Cards (1 s) was long enough for
children of this age to form distinct analog magnitude representations of each of the
large set sizes presented in this task.

2.3. Summary: Experiment 1

Experiment 1 yielded four main results. First, all CP-knowers and some subset-
knowers could estimate the size of sets of 1–4 circles without counting. This suggests
that mapping “one” to “four” to core systems is part of the process through which
the counting principles are acquired. Second, all of our subset-knowers had only
mapped “one” to “four” onto core systems; none of them showed evidence of having
mapped numerals beyond “four” onto large analog magnitudes. Moreover, almost
half of our CP-knowers also failed to show evidence of having numerals beyond
“four” onto large analog magnitudes. This suggests that the creation of mappings
between large numerals and analog magnitudes is not part of the acquisition process.
Third, we established the age at which children map verbal numerals from “Wve” to
“ten” onto analog magnitudes – namely, around 4.6, about 6 months to a year later
than the average age at which children Wrst acquire the counting principles (Le Corre
et al., 2006; Wynn, 1990, 1992). Fourth, although the variability of CP-mappers’ esti-
mates of sets of 6 or more was scalar, the variability of children’s estimates of sets of
1–4 was not scalar in any of the groups of children who had learned numerical mean-
ings for “one” to “four”, namely “four”-knowers, CP non-mappers, and CP map-
pers. Rather, at all of these knower levels, variability grew faster than mean estimates
in the small set range. This pattern of variability suggests that children did not rely on
analog magnitudes alone to estimate small set sizes. Rather, they must have engaged
representations in enriched parallel individuation, either alone or together with ana-
log magnitudes.

The results of the non-verbal ordinal task strongly suggest that the children who
failed to verbally estimate the numerical size of large sets in Fast Cards did so
because they had not yet acquired the relevant mappings, not because of extraneous
perceptual factors. CP mappers’ non-verbal ordinal judgments were more accurate
than those of subset-knowers, but, critically, they were not more accurate than those
of CP non-mappers. Therefore, CP non-mappers’ failure to estimate the numerical
size of large sets without counting cannot have been due to limits on their capacity to
perceive the numerical size of these sets without counting. Moreover, although they
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were less accurate than CP non-mappers and CP mappers, all subset-knowers (except
“one”-knowers) performed above chance on all pairs of the non-verbal ordinal task.
Thus, they should have at least been able to produce signiWcantly larger numerals for
sets of 10 than for sets 6, although the diVerence in their estimates of these sets may
have been less pronounced than that in children who showed greater perceptual
accuracy. Yet, they abjectly failed to apply larger numerals to sets of 10 than to sets
of 6. Finally, “three”-knowers and CP non-mappers only needed about 2 s to cor-
rectly order 6 vs. 10 and 8 vs. 10 and report their choice. Thus, it seems unlikely that
these children failed to estimate large set sizes because the 1-s presentation time in
Fast Cards was not long enough to allow them to form distinct analog magnitude
representations of the sizes of these sets.

What could have been cause for concern is “one”-knowers’ failure on all pairs of
the non-verbal ordinal task. However, despite this failure, their performance on Fast
Cards was not signiWcantly diVerent from that of “two”-knowers. This shows that the
very pattern of verbal numerical estimation produced by “one”-knowers’ could
obtain in children who had suYciently accurate perceptual mechanisms to succeed
on all pairs of the non-verbal ordinal task. Thus, “one”-knowers were left in our
analyses of verbal numerical estimation.

The data from the NVO task make a few additional points which, while interest-
ing, are only tangentially related to the question at hand. Thus, we only discuss them
brieXy. First, despite the large ratio diVerence between 2 vs. 3 and 2 vs. 6, children
performed equally well on these pairs. This suggests that children relied on represen-
tations other than or in addition to analog magnitudes to solve these problems. Quite
possibly, these representations were provided by parallel individuation. Second, two
details of our data conWrm other reports that the acquisition of numerals aVects per-
formance on non-verbal numerical tasks. First, as Brannon and Van de Walle (2001)
had found in their study of non-verbal ordinal judgments, “one”-knowers were the
only ones who completely failed to order any of the pairs. Since pre-verbal infants
can order both small (Feigenson & Carey, 2003, 2005; Feigenson & Halberda, 2004)
and large (Brannon, 2002) sets, it seems unlikely that “one”-knowers’ failure was
caused by representational limits on their core systems. Thus, we tentatively suggest
that knowing at least two numerals (e.g. “one” and “two”) may make discrete num-
ber a more salient feature of experience, and may be instrumental for learning the
discrete meaning of the verbal quantiWer “more”. Second, CP-knowers (mappers and
non-mappers) outperformed subset-knowers on this non-verbal task. This result con-
verges with Mix, Huttenlocher, and Levine’s (1996) report that CP-knowers outper-
formed subset-knowers on cross-modal number comparisons. Again, we speculate
that learning verbal numerals increases the salience of discrete number representa-
tions.

3. Experiment 2

Data from a study conducted previously in our laboratory allowed us to directly
test the eVects of the rate of presentation of sets to be estimated on children’s verbal



M. Le Corre, S. Carey / Cognition 105 (2007) 395–438 421
numerical estimation. Part of this study used an adaptation of Gelman’s (1993)
“What’s on This Card?” task (WOC) to test the eVects of performance demands on
subset-knowers’ ability to solve numerical tasks using counting (Le Corre et al.,
2006). In this task, children were presented with cards with sets of up to 8 stickers
pasted on them. On the Wrst trial of each set, the experimenter asked “What’s on this
card?” and then modeled the use of numerals to elicit numeral production (e.g.
“That’s right! It’s one apple!”). On further trials, the experimenter posed the same
question to probe children to describe the number of stickers on the cards. Unlike
Fast-Cards, WOC imposed no time pressure on numerical estimation and numeral
production, for cards were left in children’s view for as long as they wished. This task
thus allowed counting; in fact, in its initial design, it was meant to elicit counting.
However, we discovered that subset-knowers often spontaneously produced numer-
als without counting. Rarely, CP-knowers also did so. Thus, the WOC task provided
data that allowed us to test whether children’s verbal numerical estimation would
improve in the absence of time pressure. As in Experiment 1, a count list elicitation
task was included to make sure that children’s performance on the estimation task
would not be limited by the number of numeral types in their count list.

Another diVerence between Experiments 1 and 2 was that, in Experiment 2,
knower-levels were determined on the basis of children’s performance on the estima-
tion task itself – i.e. What’s on This Card. This diVerence should be inconsequential,
since Le Corre et al. (2006) have shown that knower-levels are essentially the same
whether they are assessed with Give a Number or with What’s on this Card.

3.1. Method

3.1.1. Participants
Sixty-three 2- and 3-year-olds participated (mean ageD3 years; 1 month,

rangeD2.0–4.0) in Experiment 2 and produced estimates of both large and small set
sizes without counting. All were Xuent English speakers recruited in the New York
City area and in the Greater Boston area. All were recruited and compensated in the
same way as the participants in Experiment 1. The majority of the children were from
middle-class backgrounds, and most were Caucasian although a small number of
Asian, African American and Hispanic children participated. An additional 57 chil-
dren participated in What’s on this Card but were not included in the study. 44 were
excluded because they did not estimate large set sizes without counting (mean
ageD3.2, rangeD2.0–4.0) and 13 because they had too few numerals in their count
list (mean ageD2.9, rangeD2.3–3.6; see results below).

3.1.2. Materials
3.1.2.1. What’s on this Card? (WOC). The materials for this task consisted of eight
“decks” of cards with sets of 1–8 stickers placed on them in one or two rows. The
cards in each deck had a distinct color and sticker type.

3.1.2.2. Count list elicitation task. The materials used for this task were small toy ani-
mals (e.g., frogs, puppies, and whales) presented in a single row.
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3.1.3. Procedure
3.1.3.1. What’s on this Card? There were two versions of this study; they are pre-
sented together because there were no eVects of version on the functions of estimates
by set size (see section on “EVect of task version”). In both versions of the task, chil-
dren were shown the Wrst card in a deck (e.g. one apple) and were asked, “What’s on
this card?” Regardless of the child’s response, the experimenter modeled the applica-
tion of a single numeral to the set by saying, “That’s right, that’s N apple(s)”, where
N was the number of stickers on the card. The experimenter never counted to model;
he or she always produced a single numeral. Modeling only occurred on the Wrst trial
of each deck; for the rest of the cards, the experimenter only asked “What’s on this
Card?”. Because Experiment 2 (range 2.0–4.0) included younger children than Exper-
iment 1 (range 3.0–5.7), we expected that some of the children in Experiment 1 (e.g.
the 2-year-olds) might not be able to count to “ten”. Thus, this task only included
sets of 1–8 elements.

The versions diVered in the model used. In the “1-model” version, directly mod-
eled on Gelman’s task, the Wrst card of every deck was a 1-card; thus, the use of num-
ber words was only modeled with “one”. This was followed by 2, and 3 (twice as 2, 3
and twice as 3, 2), then 4, 5 in either order, and then 6, 7, and 8, in random order. Fol-
lowing Gelman (1993) this version included some “probe” trials. If the child had
given a cardinal response (e.g., “two cows”) the experimenter asked, “Can you show
me?” to elicit a count response. If the child had spontaneously counted without pro-
viding a cardinal response, the experimenter asked, “So, what’s on this card?” to elicit
a cardinal response. There were three probe trials per deck.

In the “multiple-models” version, children were presented with one block of two
decks that started with 1-card models, and another block of decks that started with 7-
or 8-card models. Order of presentation of the blocks was counterbalanced. Thus, the
experimenter modeled both the use of “one” and of large numerals – namely “seven”
and “eight”. Sets used as models were not repeated within the same card deck. Cards
in the 1-model decks were presented in four orders. Two started with 1, 2, 3 followed
by 8, 4, 7, or 4, 8, 7, and two started with 1, 3, 2 followed by 7, 5, 8 or 5, 7, 8. Cards in
the multiple-model decks were presented in the reverse order. No probes were used in
this version of the task.

3.1.3.2. Count list elicitation task. Children’s count lists were elicited in one of two
ways. Children tested in the 1-model version were prompted to count in the WOC
task itself when the experimenter asked “Can you show me?” Children tested in the
large models version were presented with a row of eight small toy animals after they
had been tested on WOC. They were simply asked to count them. If their counting
was grossly wrong, the experimenter asked them to count one more time more
slowly, and assisted their counting by pointing to each object as they counted.

3.2. Results

3.2.1. Knower levels
To be granted knowledge of the exact meaning of a number word, children had to:
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(1) Say “N” at least 67% of the time when presented with N stickers;8

(2) Say “N” no more than half as often when presented with diVerent numbers;
and

(3) Satisfy conditions 1 and 2 for all numbers less than N.

To distinguish children who understood the cardinal principle (CP-knowers) from
children who didn’t, we analyzed trials where children correctly counted the set
(allowing for one error) and then produced a numeral (e.g. they said “1, 2, 3, 4, 5.
That’s two bears!” or “1, 2, 3, 4, 5. Five!” on a trial with a set of 4, 5, or 6 stickers). If
children understand counting, their numerals should match the last word of the pre-
ceding count. Thus, we obtained a “match score” for each child as follows: we calcu-
lated the number of trials for which children counted and then produced a numeral
that matched the last numeral of their count and divided this number by the total
number of trials for which children produced a count followed by any numeral,
whether it matched the count or not. This allowed us to determine whether, given
that they had counted a set, children knew that the last numeral of their count repre-
sented the size of the set. As we demonstrated elsewhere (Le Corre et al., 2006) chil-
dren who don’t understand counting can have large match scores on small numbers
(2 and 3) because of an accidental match between subitizing and numerically mean-
ingless but procedurally correct counting. To avoid this confound, we only computed
match scores for large numbers (4 to 8). To be considered CP-knowers, children had
to meet criteria 1, 2, and 3 for “one”, “two” and “three” and had to have match
scores greater or equal to 50% on cards with 4 or more stickers.

These criteria divided children into six knower-level groups: children who did not
know the exact meaning of any numerals (hereafter referred to as “0-knowers),
“one”-knowers,9 “two”-knowers, “three”-knowers, “four”-knowers, and CP-know-
ers. The size, age and count list length of each of these knower-levels are reported in
Table 3. The “one”-knowers and the “two”-knowers in this experiment were younger
than the ones in Experiment 1 (compare Tables 1and 3). This diVerence was the prod-
uct of the great variability in the age at which individual children achieve each
knower-level; some two-and-a-half year olds are CP-knowers, but some 3-year-olds
are still “one”-knowers (see Le Corre et al., 2006; Wynn, 1992). The whole age range
for “one”-knowers and “two”-knowers was included only in Experiment 2; Experi-
ment 1 only included the oldest end of the range. Hence the diVerence in the average
age of children in these knower-levels.

8 If children incorrectly counted a set of n stickers and repeated the last word of the count, they were
considered to have said “n” only if their count contained no more than one error. Trials in which the
counts contained more than one error were excluded from this analysis.

9 Thirteen of our “one”-knowers actually did not produce any numerals on trials with 1 sticker because
they always referred to sets of 1 with a singular noun (e.g. “a bear” or “bear”). However, they did produce
numerals for set sizes beyond 1, but never used “one” to refer to these. Therefore, these children were clas-
siWed as “one”-knowers. All of these children were in the 1-model condition. The fact that sets of 1 were
the Wrst card of each deck in this condition probably explains why these children preferred to refer to these
cards with singular nouns.
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3.2.2. Count list elicitation
To be sure that children’s performance on What’s on this card? would not be lim-

ited by their counting range, we only wanted to include children who could at least
count to “eight”. While three-quarters of the children in our sample could recite the
count list that far, the rest could not. Thus, in order to use as much of our sample as
possible, we also included “one”-knowers who could only count to “six” (nD6) or
“seven” (nD8), and “two”-knowers who could count only count to “seven” (nD 4).
All others could at least recite the count list to “eight”, and all recited the count list in
the standard adult order.

3.2.3. What’s on this card?: Assessment of the mapping to core systems
The What’s on This Card? task provided children with enough time to count

the sets, and children did sometimes count. Most of those who counted the
sets to determine their cardinality were CP-knowers. Because numeral production
based on counting (e.g. “One, two, three, four. That’s four bears!) does not
necessarily tap mappings between numerals and core systems, we only
included trials on which children produced numerals without having Wrst counted
the set.

As in Experiment 1, we calculated the average of each child’s verbal estimates as a
function of set size, and averaged individual functions together for each knower-
level. Functions were only computed for children who produced at least one numeral
on 5, and one numeral on 7 or 8. Sixty-three children met this criterion; 25 were in the
1-model condition and 38 were in the multiple-models condition. “One”-knowers
and “two”-knowers were analyzed separately because each group was large, but
“four”-knowers were combined with “three”-knowers because there were so few of
them.

A 4 (knower-level: 0, “one,” “two”, “three/four”, CP) X 2 (task version: 1-model,
multiple models) £ 7 (set size) ANOVA with set size as a repeated measure
assessed whether there were eVects of task version on children’s average estimate.
None of the eVects involving task version were signiWcant. The only signiWcant

Table 3
Age, count list length and knower-levels of children analyzed in Experiment 2

a Ages are in years and months (years; months).
b Children’s count list length was determined by the children’s longest count; e.g. the count list length for

a child who once counted to “Wve” and once to “eight” would be 8.

Levels n Agea Count list lengthb

Mean (SE) Range Mean (SE) Range

0-knowers 2 2.6 (4.6) 2.6–3.4 9.0 (1.0) 8–11
1-knowers 24 2.7 (1.0) 2.0–3.4 8.2 (0.4) 6–10
2-knowers 18 3.1 (1.3) 2.0–3.11 9.0 (0.5) 7–14
3-knowers 9 3.5 (1.8) 3.1–4.0 9.0 (0.4) 8–11
4-knowers 3 3.2 (4.6) 2.5–3.7 11.3 (0.7) 10–12
CP-knowers 7 3.8 (1.0) 3.5–3.10 8.8 (0.3) 8–10
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eVects were set size, F (6, 318) D 125.1, p < .001, knower-level, F (3, 53) D 11.57,
p < .001, and the interaction between knower-level and set size, F (18, 318) D 10.1,
p < .001. Thus, data from the diVerent versions of the task were analyzed together.
The resultant functions are shown in Fig. 6. To determine whether children were
able to estimate the numerical size of large sets (5, 7, and 8), we measured the slope
of these functions in the large set size range (hereafter referred to as “5–8 slope”)
for each knower-level, and determined whether these were signiWcantly diVerent
from 0.

3.2.3.1. Subset-knowers. Fig. 6 shows that all of the groups of subset-knowers had
functions with Xat 5–8 slopes; i.e. none of the 5–8 slopes for subset-knowers were sig-
niWcantly diVerent from 0 (see Table 4).

While all of the subset-knowers’ functions were Xat in the 5–8 range, each of the
groups had a distinct function. Although all of them could at least count to “seven”,
0-knowers used numerals randomly for all set sizes they were presented with; i.e. the
average 1–8 slope for 0-knowers was equal to 0 (MD¡0.02, SED .04).

Fig. 6. Average numeral by set size functions for subset-knowers tested on What’s on this Card? “Four”-
knowers were grouped with “three”-knowers because there were only three of them.
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“One”-knowers, of course, accurately estimated the sizes of sets of 1, but, although
all of them could at least count to “six”, most of them used numerals randomly when
presented with sets of 2 or more stickers; i.e. the average 2–8 slope for “one”-knowers
(MD0.07, SED .04) was not signiWcantly diVerent from 0, t (23)D1.74, ns. In fact,
many “one”-knowers applied the same numeral – usually “two” but sometimes
“three” – to all sets greater than 1.

The shape of “two”-knowers’ function shows that they used numerals ran-
domly when presented with sets of 4 or more stickers; i.e. the 4-8 slope for “two”-
knowers (M D¡0.07, SE D .11) was not signiWcantly diVerent from 0,
t (16) D¡0.64, ns. Thus, although all of them only met our knower-level criteria
for being “two”-knowers, “two”-knowers’ function suggests that some of them
were on their way to learning “three”. Indeed, seven “two”-knowers mostly said
“three” for sets of 3, and rarely applied it to larger set sizes. This suggests that
average numeral produced as a function of set size is a more sensitive measure of
children’s knowledge of numerals than our knower-level categorization criteria.
The other “two”-knowers really only knew “one” and “two”. Many of these chil-
dren applied the same numeral – usually “three” – to all set sizes greater than 2. In
sum, some “two”-knowers really only knew “one” and “two”, some were on their
way to learning “three”, but none of them had mapped any numerals beyond
“three” onto core systems.

Finally, “three”- and “four”-knowers produced accurate estimates of sets of 1, 2,
3, and 4, but used numerals randomly when presented with sets of 5 or more (see
Table 4 for their 5–8 slope). The accuracy of this group’s estimates of the size of sets
of 4 was mostly due to the “four”-knowers. However, two “three”-knowers were on
their way to learning “four”; i.e. the average of the numerals they applied to 4 was
between 4 and 4.5, and they rarely applied “four” to larger set sizes.

3.2.3.2. CP-knowers. The 5–8 slope (MD 0.51, SED 0.22) for CP-knowers’ function
was marginally greater than 0, t (6)D 2.35, pD 0.06. However, two of the seven CP-
knowers had 5–8 slopes that were less than 0.3 (¡0.55 and 0.14). The others all had
5–8 slopes that ranged between 0.5 and 1.1. As in Experiment 1, the CP-knowers
with 5–8 slopes less than 0.3 (MD 42.4 months, SED 1.6) were younger than those
with large 5–8 slopes (MD 44.6 months, SED 0.71). This suggests that, despite its
small size, this sample of CP-knowers replicated Experiment 1; it included both
mappers and non-mappers. Given these similarities with Experiment 1, the func-

Table 4
Subset-knowers’ 5–8 slopes for What’s on this Card

a These are the results of two-tailed one-sample t-tests of each 5–8 slope against 0; “ns” means that the
p-value was greater than 0.05. The 5–8 slope for 0-knowers was not tested against 0 because there were
only two of them.

Knower-level 5–8 slope ta df p

“One”-knowers 0.06 (0.09) 0.64 23 ns
“Two”-knowers 0.04 (0.10) 0.44 17 ns
“Three” and “four”-knowers 0.16 (0.21) 0.76 12 ns
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tions for CP-knowers with small 5–8 slopes (less than 0.3) and CP-knowers with
large 5–8 slopes (more than 0.3) are graphed separately in Fig. 7.

3.3. Summary: Experiment 2

As in Experiment 1, all subset-knowers and some CP-knowers failed to esti-
mate the numerical sizes of sets of Wve or more without counting. Unlike Experi-
ment 1, Experiment 2 allowed children to take as much time as they wished to
estimate the sizes of small and large sets. Therefore, their failure to estimate the
sizes of large sets cannot be attributed to the rate of presentation of the sets. A
potential problem with this interpretation is that the “one” and “two”-knowers in
Experiment 2 were much younger than those in Experiment 1 (see Tables 1 and 3).
However, the “three”- and “four”-knowers in both experiments were of compara-
ble ages (about 3.6 on average). These children still failed to estimate the numeri-
cal size of large sets in Experiment 2. Thus, this strongly suggests that the age
diVerence of the “one”- and “two”-knowers in Experiments 1 and 2 is not a cause
for concern.

Moreover, subset-knowers’ and CP non-mappers’ failure to estimate large set sizes
cannot be attributed to a lack of numerals, for all of them could count further than
they could estimate. For example, all “one”-knowers could at least count to “six” but
none of them could estimate the size of sets greater than 1. Finally, their failure to
apply larger numerals to sets of 8 than to sets of 5 cannot be attributed to limits on
the resolution of their analog magnitude system, for the non-verbal ordinal task in
Experiment 1 showed that all children who were at least “two”-knowers could order
pairs of sets the ratios of which were even less favorable than 5:8 (0.625) – i.e. 8 vs. 10
(0.8). The data from Experiment 2 thus conWrm the conclusion of Experiment 1: the

Fig. 7. Average numeral by set size functions for CP non-mappers (continuous line) and for CP mappers
(dashed line). CP non-mappers were CP-knowers who had functions with 5–8 slopes that were less than
0.3; CP mappers had 5–8 slopes that were greater than 0.3.
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mapping of “one” to “four” onto core systems is part of the process whereby the
counting principles are constructed, but the mapping of numerals beyond “four”
onto analog magnitudes is not.

4. General discussion

These experiments yielded Wve important results. First, previous studies had
found no “four”-knowers among subset-knowers (Wynn, 1990, 1992), or just a
few (Le Corre et al., 2006; Sarnecka & Gelman, 2004). “Four”-knowers were
also relatively rare in our sample. Nonetheless, Experiments 1 and 2 showed that
CP-knowers (both mappers and non-mappers) could reliably estimate the
number of individuals in sets of 1–4, distinguishing “four” from larger numerals
in their estimates. Even some subset-knowers could do so. This result suggests
that the numeral learning sequence leading to the acquisition of the
counting principles not only involves learning numerical meanings for “one” to
“three” one numeral at a time, but also involves learning a numerical meaning for
“four”. The relative rarity of “four”-knowers, relative to other subset-knower lev-
els or CP-knowers, suggests that this knower-level phase is much shorter than the
others.

Second, all subset-knowers could recite the count list beyond “four”; in fact,
most could recite it up to “ten”. Yet, some could only estimate number for sets of
1, some could only do so for sets of 1 and 2, some could only do 1, 2, and 3, and
others could only do 1, 2, 3, 4. None could estimate number for sets of more than
four objects. That is, the 45 subset-knowers in Experiment 1 and the 54 in Experi-
ment 2 all used numerals randomly when estimating the set sizes in the range of 5–
10. Some even applied a single numeral to all sets beyond the largest set they could
estimate. For example, many of those who could only estimate number for sets of
1 applied “two” to all sets larger than 1, and many of those who could only do so
for sets of 1 and 2 applied “three” to all sets larger than 2. This suggests that sub-
set-knowers had at most mapped “one” to “four” onto core representations of
small sets – i.e. enriched parallel individuation, analog magnitudes, or both. These
data converge with Condry and Spelke’s (under review) assessment of subset-
knowers’ knowledge of the mappings between large numerals and analog magni-
tudes. Condry and Spelke tested subset-knowers’ knowledge of these mappings
with a very diVerent task. Indeed, theirs was a comprehension task. Thus, the
results obtained here must not have been due to demands particular to our verbal
estimation tasks.

Third, our experiments provide the Wrst evidence that, for a period of about six
months after mastering the counting principles, even CP-knowers fail to estimate
the cardinality of sets of more than 4 objects; these children were dubbed “CP non-
mappers”. This is a striking Wnding. Children who could use their count list to
determine the number of objects in a set applied the same numerals to sets of 6, 8,
and 10 circles when prevented from counting (e.g. some said “Wve” for all of these
sets). Seeing their abject failure to estimate the size of large sets, one might wonder
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whether CP non-mappers actually understood the counting principles. Previous
studies that attributed knowledge of the counting principles on the basis of the
same tasks and criteria used here strongly suggest that they did (Le Corre et al.,
2006; Wynn, 1990, 1992). These previous studies found that all and only children
categorized as CP-knowers could use their count list to determine the number of
objects in a set in a variety of sophisticated ways. For example, they could use
counting to check whether a set contained some requested number of objects and
to Wx the number of objects if it was incorrect (Le Corre et al., 2006; Wynn, 1990,
1992), and could determine whether a third party had correctly counted out large
numbers of objects (Le Corre et al., 2006). This suggests that all CP-knowers in our
study – whether mappers or non-mappers – truly understood the counting princi-
ples. Therefore, the existence of CP non-mappers provides strong evidence that
children need not map numerals beyond “four” onto large analog magnitudes to
acquire the counting principles. Rather, the mappings between large numerals and
analog magnitudes are formed many months after the acquisition of the counting
principles.

Fourth, these results establish the age at which middle-class American children
Wrst create a mapping between numerals from “Wve to ten” and analog magnitudes.
Previous studies of knowledge of the mappings between large numerals and analog
magnitudes in children either only included children who failed to show this knowl-
edge (Condry and Spelke, under review) or children age 5 or older who succeeded
(Duncan & McFarland, 1980; Huntley-Fenner, 2001; Lipton & Spelke, 2005; Sek-
uler & Mierkiewicz, 1977; Temple & Posner, 1998). Thus, the average age of our
CP-mappers provides the Wrst estimate of the age at which children begin to map
large numerals onto analog magnitudes – i.e. about four-and-a-half. Moreover, in
Experiment 1, the shape of CP-mappers’ estimation function for large set sizes was
nearly identical to the adult function both in its slope – which was nearly equal to 1
– and in its coeYcient of variation – which was about 0.2 (see Cordes & Gelman,
2005; Whalen et al., 1999 for the adult values). This suggests that the mappings
between “Wve” to “ten” and analog magnitudes reach their adult form soon after
their creation.

The last major Wnding is that children’s estimates of small sets (1–4) did not
show the tell-tale signature of numerical estimation based on analog magnitudes,
namely scalar variability. Variability is scalar when the ratio of the standard
deviation of estimates over the mean estimate for a given set size (the coeYcient of
variation or COV) remains constant for all set sizes. Children’s estimates of
the sizes of small sets failed to show scalar variability in two ways. First, “three”-
knowers’, “four”-knowers’, CP non-mappers’ and CP-mappers’ COVs for
small sets increased as a function of set size. Second, the average COV for CP-
mappers’ estimates of small set sizes was signiWcantly smaller than their
average COV for set sizes, in the range where CP-mappers clearly used analog
magnitudes – i.e. 6 to 10. Taken together, these results strongly suggest that all
children relied on some representation other than or in addition to analog
magnitudes to estimate the sizes of small sets, presumably enriched parallel indi-
viduation.
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4.1. The conceptual sources of the verbal counting principles

These Wve Wndings greatly constrain theories of the acquisition of the verbal
counting principles. First, they clearly establish that, whereas mappings between
“one” to “four” and core representations of small sets are part of the acquisition
process, mappings between numerals larger than “ four ” and analog magnitudes
play no role in it. Second, the existence of CP non-mappers militates against the
Wynn (1992) and Spelke (Feigenson et al., 2004; Hauser et al., 2004; Spelke & Tsiv-
kin, 2001a) proposal that inferring that “further in the count list implies larger
magnitude” is part of the process of acquiring the counting principles. Knowing
the relation between the order of symbols in the count list and the size of analog
magnitudes should have allowed children to rapidly learn the mappings between all
numerals in their count lists and analog magnitudes. This expectation seems partic-
ularly reasonable for CP-knowers, since these children actually know how to use
the linear order of the numerals in their count list to determine the number of
objects in a set. Therefore, it seems quite likely that CP non-mappers had not
noticed the relation between the linear order of symbols in the count list and ana-
log magnitude size. This, in turn, suggests that noticing this relation cannot be part
of the acquisition of the counting principles.

Le Corre (under review) asked directly whether all CP-knowers can answer ques-
tions about numerical order on the basis of verbal information alone (e.g., “Which
box has more Wsh inside; this one with ten Wsh or this one with six Wsh?”). He found
that CP non-mappers can make ordinal inferences on the basis of expressions con-
taining small numerals (e.g. “three Wsh” is more than “two Wsh”) but can’t make such
inferences if the expressions contain only large numerals. For example, they do not
know that the expression “ten Wsh” picks out more Wsh than the expression “six Wsh”.
Children can only order expressions with large numerals once they become CP map-
pers. Le Corre’s results thus provide direct evidence that noticing the relation
between linear order in the count list and the numerical value speciWed by analog
magnitudes cannot be part of the process that leads to the acquisition of the counting
principles.

Finally, Experiments 1 and 2 strongly suggest that “one” to “four” are mapped
onto representations of small sets provided by enriched parallel individuation
alone. Although analog magnitude representations are deWned for small numbers,
the lack of scalar variability in children’s estimates of sets of 1–4 objects shows
that analog magnitudes alone do not support the Wrst meanings of “one” through
“four”. To repeat, Wnding variability in estimates does not by itself implicate ana-
log magnitudes. Rather, all models of analog magnitudes not only predict vari-
ability in estimates, but predict scalar variability (Cordes & Gelman, 2005; Izard
& Dehaene, under review; Whalen et al., 1999). Nor does Wnding variability in
estimates of small set sizes rule out that “one” to “four” are mapped onto repre-
sentations provided by enriched parallel individuation. Indeed, as spelled out in
the introduction, the pattern of error inherent to maintaining working memory
models of individuals and to comparing the working memory models to the long-
term models provided by set-based quantiWcation may be exactly the one we
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obtained here, namely error increasing more rapidly than the mean (see Vogel
et al., 2001).

Thus, the pattern of error in children’s estimates of small sets strongly suggests
that representations provided by enriched parallel individuation are at least part of
the mappings that support “one” to “four”. But we take our results support a stron-
ger conclusion, namely that the counting principles are acquired from enriched paral-
lel individuation alone. The reason is that this view predicts our main result, namely
that children learn numerical meanings for “one”, “two”, “three” and “four” and
nothing more as part of the acquisition process. In contrast, this result is an embar-
rassment for any view that implicates the analog magnitude system. In this system,
the magnitude of the representations increases following a continuous function
(either linear – e.g. Brannon et al., 2001; – or logarithmic – e.g. Dehaene, 2003; Izard
& Dehaene, under review) in which there are no principled breaks between represen-
tations of large and small sets, as does the noise in the representations (i.e. it increases
linearly in the linear model and it remains constant in the logarithmic model). Thus,
the view that children map “one” to “four” onto analog magitudes representations to
acquire the counting principles cannot provide any principled reason why the asso-
ciative process that would lead children to map these numerals onto small analog
magnitudes would not also support mapping any numerals beyond “four” onto large
analog magnitudes.

4.2. The acquisition of the counting principles involves the construction of a new repre-
sentational resource

In a famous discussion with Noam Chomsky and several other cognitive scien-
tists, Piaget argued that the history of mathematics involved the construction of
new representations that were more powerful than those that preceded them (Pia-
telli-Palmarini, 1980). As brieXy reviewed in the introduction, multiple lines of
investigation converge to suggest that the acquisition of the verbal counting prin-
ciples is not guided by innate, non-verbal counting principles. This same evidence
warrants a stronger, albeit debated conclusion, namely that the counting princi-
ples may have been one of the earliest constructions in the history of human
mathematics, and that it is the Wrst new mathematical system constructed in the
cognitive development of contemporary humans (see Cordes & Gelman, 2005;
Gallistel & Gelman, 1992, 2000; Rips et al., 2006; Wynn, 1998 for dissenting
views). Analysis of the structure of the core number systems for which there has
been evidence in human infants suggests that all of them diVer radically from
counting principles both in their format and in their expressive power. Even when
enriched with the symbolic devices of set-based quantiWcation, parallel individua-
tion cannot represent the cardinality of sets of more than 4 individuals. Analog
magnitudes, on the other hand, are ratio-limited (e.g. 6-month-olds can only dis-
criminate sets on the basis of number if their ratio is at least 2:1; Xu & Spelke,
2000; Xu et al., 2005), and thus obscure the successor function (e.g. the 6-month-
old’s system cannot discriminate 5 from 6). Moreover, while analog magnitudes
could, in principle, have been generated by an iterative mechanism that implicitly
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deWned the counting principles (see Gallistel & Gelman, 1992), there is now con-
siderable evidence that this mechanism is not iterative, neither in adulthood
(Barth, Kanwisher, & Spelke, 2003) nor in infancy (Wood & Spelke, 2005). This
suggests that analog magnitudes do not implement the counting principles. Thus,
none of the core number systems could capture the verbal counting
principles. This would explain why the acquisition of the verbal counting
principles is so protracted and why it starts from an interpretation of the numer-
als and the list itself that markedly diverges from the adult interpretation. It
would also explain why there are still small cultures whose language and cultural
practices do not include anything that remotely looks like counting (Gordon,
2004; Pica et al., 2004).

The present data add further weight to the claim that the verbal counting princi-
ples are constructed. By suggesting that children do not map their numerals onto
analog magnitudes to learn how counting represents number, they speciWcally
undermine Gallistel and Gelman’s (1992) proposal that the acquisition of the ver-
bal counting principles is guided by the mechanism that generates analog magni-
tudes. Also, by providing positive evidence that the verbal counting principles are
learned from mappings between the small numerals in the count list and represen-
tations provided by enriched parallel individuation, they suggest that children con-
struct the counting principles from a representational system that cannot express
them.

4.3. Constructing the counting principles from enriched parallel individuation

Several authors have proposed that the counting principles could be constructed
from enriched parallel individuation and the memorized verbal count list by a
bootstrapping process (Carey, 2004; Hurford, 1987; Klahr & Wallace, 1976). The
idea is that the child makes an analogy between two very diVerent ordering rela-
tions: sequential order in the count list (e.g. “two” after “one” and “three” after
“two”), and sets related by addition of a single individual ({ix}, {ix iy}, {ix iy iz}).
This analogy then supports the induction that each numeral refers to a set that can
be put into 1–1 correspondence with a set of a given cardinality, with cardinalities
individuated by additional individuals. It also supports the induction that for each
numeral on the list that refers to a set of cardinality n, the next numeral on the list
refers to a set with cardinality n + 1. The present data are consistent with this pro-
posal, but of course, they do not establish it. At the very least, we would want to
compare subset-knowers with CP-knowers, Wnding that every CP-knower under-
stands that sets labeled by successive integers are related by +1. Preliminary evi-
dence suggests that subset-knowers do not realize this and that CP-knowers do
(Sarnecka, Cerutti, & Carey, 2005).

A recent study comparing numeral learning in Japanese, Russian, and American
English (Sarnecka et al., in press) provides evidence that children’s Wrst hypothesis as
to the meaning of the numerals in their count list is constrained by set-based quanti-
Wcation. This study showed that children learning Japanese, a classiWer language with
no singular-plural distinction, learn the cardinal meaning of “one” much later than
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do children learning Russian or English, in spite of learning the count routine as
early as children learning the latter languages. Li, LeCorre, Shui, Jia, & Carey (2003)
have replicated this Wnding in a comparison of Chinese and English learners. A rea-
sonable interpretation of these results is that children learning English or Russian
learn the numerals faster than children learning Japanese or Mandarin Chinese
because their language marks the relationship between numerals and set-based
quantiWcation more explicitly and more richly, especially with respect to obligatory
markings of the singular/plural distinction.

Moreover, according to Hurford (1987), the historical construction of the
counting principles similarly built upon parallel individuation enriched by the set-
based quantiWcation central to language. He argues that, until the counting princi-
ples became a widespread cultural construction, human languages only had dis-
tinct morphemes for sets of 1–3 or 4 individuals. His argument rests on multiple
lines of evidence. First, he notes that cultures without count lists typically don’t
have numerals for set sizes beyond “four” (see also Gordon, 2004; Pica et al.,
2004).10 Second, he reviews evidence that the linguistic symbols for sets of 1
through 4 are the only ones that ever changed their form as a function of their
syntactic environment (e.g. by agreeing in case and/or gender with the nouns they
modiWed); symbols for set sizes greater than 4 have always been universally syn-
tactically invariant. Hurford takes these two lines of evidence to show that the
numerals for 1–4 were initially quantiWers the semantics of which were indepen-
dent of counting principles, much like “a,” “many”, or “both”. Finally, he points
out that in many languages the relation between cardinal and ordinal forms is
irregular for small numerals but regular for large numerals. For example, in
English, the rule “cardinal + thD ordinal” (with slight phonological alterations of
the cardinal) only applies to numerals beyond “three”. Since the basic principle of
the counting principles is to link ordinality with cardinality (e.g. the third numeral
is the one that means three), Hurford takes this as further evidence to show that
the small numerals existed prior to any list-based representation of number. While
admittedly speculative, Hurford’s argument thus suggests that the ontogenetic
construction of the counting principles mirrors its historical counterpart insofar
as, in both cases, the acquisition of linguistic symbols for set sizes beyond 4
depends upon the creation of the counting principles. In fact, his speciWc model of
the historical construction process is essentially the same as the developmental
process proposed here.

4.4. Additional implications of the results

In addition to constraining theories of the process through which children
acquire the count list representation of number, one of our major Wndings – the

10 To our knowledge, Pica et al. (2004) report the only exception to this rule. They show that, amongst the
Munduruku, a small Amazonian tribe, most adults don’t have a count list but some sometimes use the
word for hand to refer to sets of 5. However, the use of the word for hand as a symbol for 5 is much less
widespread and much less productive than the use of numerals for sets of 1–4. Therefore, the Munduruku
only provide a weak exception to this rule.
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existence of CP non-mappers – also speaks to the nature of the relation between
the count-based representation of the positive integers and analog magnitudes.
When tested on Give a Number, CP non-mappers were able to use counting to
create exact sets upon request, even if the experimenter had requested “Wve”, “six”
or even “ten” objects. These are the very same children who, on average, applied
the same numerals to sets of 6, 8, and 10 circles when prevented from counting.
This interesting state of aVairs provides very strong evidence that the system of
numerical representations created via the verbal list of numerals is functionally
independent from non-verbal analog magnitudes. In this sense, our discovery of
CP non-mappers is entirely consistent with chronometric (Spelke & Tsivkin,
2001b), neuropsychological (Lemer et al., 2003) and brain imaging (Dehaene &
Cohen, 1992; Dehaene et al., 1999) evidence that adult language-based representa-
tions of exact arithmetic are functionally and neurally dissociable from analog
magnitudes.

5. Conclusions

Our investigation supports two conclusions concerning the nature of the concep-
tual sources of the verbal counting principles: (1) children acquire the counting prin-
ciples by mapping “one” to “four” onto representations that must include
representations of small sets in enriched parallel individuation; and (2) despite the
availability of numerals beyond “four” in children’s placeholder count list, mappings
between numerals beyond “four” and analog magnitudes are not part of the acquisi-
tion process. In fact, our data suggest that the role of analog magnitudes in the acqui-
sition process is quite limited at best. First, our discovery of CP non-mappers
suggests that the induction of the counting principles is not based on the generaliza-
tion that “later in the count list means larger analog magnitude”. Second, evidence
that acquisition only requires mapping numerals that pick out set sizes that fall
within the representational capacity of the adult parallel individuation system, and
that the COV increases as sets increase from 1 to 4, both for subset-knowers and CP-
knowers, strongly suggests that parallel individuation may be the only core numerical
system recruited in this process. Thus, our results surprisingly suggest that analog
magnitudes may play no role in the acquisition process. Finally, they suggest that the
counting principles are acquired from a conceptual resource – i.e. enriched parallel
individuation – that cannot express the counting principles. Thus, our results contrib-
ute further evidence that the acquisition of the verbal counting principles involves the
construction of a representational resource that is more powerful than those from
which it is constructed.
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