Chapter 1

Basic Concepts of Set
Theory

1.1 The concept of a set

A set is an abstract collection of distinct objects which are called the mem-
bers or elements of that set. Objects of quite different nature can be members
of a set, e.g. the set of red objects may contain cars, blood-cells, or painted
representations. Members of a set may be concrete, like cars, blood-cells or
physical sounds, or they may be abstractions of some sort, like the number
two, or the English phoneme /p/, or a sentence of Chinese. In fact, we
may arbitrarily collect objects into a set even though they share no property
other than being a member of that set. The subject matter of set theory and
hence of Part A of this book is what can be said about such sets disregarding
the actual nature of their members.

Sets may be large, e.g. the set of human beings, or small, e.g. the set
of authors of this book. Sets are either finite, e.g., the readers of this book
or the set of natural numbers between 2 and 98407, or they are infinite, e.g.
the set of sentences of a natural language or the set of natural numbers:
zero, one, two, three, .... Since members of sets may be abstract objects,
a set may in particular have another set as a member. A set can thus
simultaneously be a member of another set and have other sets as members.
This characteristic makes set theory a very powerful tool for mathematical
and linguistic analysis.

A set may be a legitimate object even when our knowledge of its member-
ship is uncertain or incomplete. The set of Roman emperors is well-defined
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even though its membership is not widely known, and similarly the set of all
former first-grade teachers is perfectly determined, although it may be hard
to find out who belongs to it. For a set to be well-defined it must be clear in
principle what makes an object qualify as a member of it. For our present
purposes we may simply assume that, for instance, the set of red objects is
well-defined, and disregard uncertainties about the exact boundary between
red and orange or other sources of vagueness.

A set with only one member is called a singleton, e.g. the set consisting
of you only, and there is one special set, the empty set or the null set, which
has no members at all. The empty set may seem rather startling in the
beginning, but it is the only possible representation of such things as the set
of square circles or the set of all things not identical to themselves. Moreover,
it is a mathematical convenience. If sets were restricted to having at least
one member, many otherwise general statements about sets would have to
contain a special condition for the empty set. As a matter of principle,
mathematics strives for generality even when limiting or trivial cases must
be included.

We adopt the following set-theoretic notation: we write 4, B, C,...
for sets, and a,b,c,... or sometimes Z,Y,z,... for members of sets. The
membership relation is written with a special symbol €, so that b € 4 is
read as ‘b is a member of A’. It is convenient also to have a notation for
the denial of the membership relation, written as &, so that b ¢ A is read as
‘b is not a member of A’. Since sets may be members of other sets we will
sometimes write A € B, when the set A4 is a member of set B; disregarding
the convention that members are written with lower case letters.

1.2 Specification of sets

There are three distinct ways to specify a set: (1) by listing all its members,
(2) by stating a property which an ob ject must have to qualify as a member
of it, and (3) by defining a set of rules which generate its members. We
discuss each method separately.

List notation: When a set is finite, its members can in principle be
listed one by one until we have mentioned them all. To specify a set in
list notation, the names of the members, written in a line and separated by
commas, are enclosed in braces. For example, the set whose members are
the world’s longest river, the first president of the United States and the
number three could be written as
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(1-1) {The Amazon River, George Washington, 3}

Several things must be noted here. First, in specifying a set, we use a name
or some definite description of each of its members, but the set consists
of the objects named, not of the names themselves. In our example, the
first president of the United States, whose name happens to be ‘George
Washington’, is a member of the set. But it is the man who belongs to the
set, not his name. Exactly the same set could have been described in the
following way

(1-2) {The Amazon River, the first president of the United States, 3}

by using an alternative mmmnavaos for this individual. Of course, a set may
also contain linguistic objects like names. To avoid confusion, names which
are members of sets in their own right are put in single quotes. The set

(1-3) {The Amazon River, ‘George Washington’, 3}

should hence be distinguished from the set in (1-1), as it contains a river,
a name and a number, but not the man who was the first president of the
United States. It is important to realize that one and the same set may
be described by several different lists, which prima facie have nothing in
common except that they denote the same individuals.

Second, insofar as sets are concerned, it is an accidental feature of our left
to right writing convention that the members are listed in 2, particular order.
Contrary to what this notation may suggest, there is no first, second or third
member in the set (1-1). A less misleading notation, which we sometimes
use, is shown in (1-4) below; it avoids the suggestion of any ordering of its
members (see the Venn diagrams in Sec. 6 below).

(1-4) :
George Washington

The Amazon River

The list notation is obviously more convenient to write and typeset, and is
therefore usually preferred.
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Another point about the list notation for sets is that writing the name of
a member more than once does not change its membership status. Should
we write

(1-5) {a,b,c,d,e,e,e,e}
we would have described exactly the same set as by writing
:Imv AQJ F ¢, &,mu_.

This is a consequence of a fundamental principle of set theory: for a given
object, either it is a member of a given set or it is not. There is no such thing
as halfway, multiple or gradual membership in our set theory (although there
have been attempts to construct theories of “fuzzy sets”; see Zadeh (1987)).

For large finite sets the list notation may be impractical and is abbrevi-
ated if some obvious pattern can be recognized in the list. For example, to
list all multiples of five between zero and one hundred, we may write:

(1-7) {0,5,10,15,...,95,100}

Predicate notation: The list notation can be used, strictly speaking,
only for finite sets, although it is sometimes used in elliptical form for well-
known infinite sets such as the various sets of numbers. For example, the set
of positive integers (whole numbers) is sometimes denoted by {1,2,3,4,...}.
A better way to describe an infinite set is to indicate a property the mem-
bers of the set share. The so-called predicate notation for this type of set
description is illustrated by

(1-8) {z | z is an even number greater than 3}

The vertical line following the first occurrence of the variable z is read ‘such
that’. The whole expression in (1-8) is read ‘the set of all z such that z
is an even number greater than 3. Here z is a variable, which we may
think of as an auxiliary symbol that stands for no particular object, but it
indicates what the predicate is applied to. Note that the predicate notation
describes finite and infinite sets in the same way (e.g., the predicate ‘z is an
even number between 3 and 9’ specifies the finite set {4,6,8}) and that two
predicates, if they are coextensive, will specify the same set. For example,

(1-9) {z | = is evenly divisible by 2 and is greater than or equal to 4}
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is the same set as (1-8).

A predicate may also define its members in relation to something else.
For instance, the set

(1-10) {z |z is a book and Mary owns z}

contains the books that Mary owns.

Russell’s Paradox: In the early years of set theory any conceivable
property was thought to be a defining property of a set. But Bertrand Russell
discovered in 1901 that a paradox could be obtained from an apparently
acceptable set specification of that sort.

Russell observed first that if sets are defined by properties of their mem-
bers, some sets will turn out to be members of themselves and other sets
will not. For example, the set of all elephants is not itself an elephant, and
therefore is not a member of itself. But the set of all abstract concepts must
contain itself as member, since a set is an abstract concept. The properties
‘is a member of itself’ and ‘is not a member of itself’ should therefore also be
defining properties of sets. In particular, then, one could define a set U as the
set of all those sets which are not members of themselves: U = {z | = ¢ z}.
Then we may ask of U whether it is a member of itself. Now two cases may
obtain: (i) if U is not a member of itself, then it satisfies the defining char-
acteristic of members of U, and therefore it must be a member of U, i.e., of
itself; or (ii) if U is a member of itself, then it does not satisfy the defining
property, hence it is not a member of U, i.e., of itself. Since U either is or is
not a member of U, the result is a logical paradox. The evident conclusion
from this paradox is that there is no such set U, but nothing in Cantor’s
set theory excluded such a possible defining property. The discovery of the
Russell paradox was therefore of great importance (many different but es-
sentially equivalent versions have since been formulated), but it was all the
more significant in light of the fact that logicians and mathematicians had
been attempting to show that set theory could serve as a foundation for all
of mathematics. The appearance of a paradox in the very foundations of set
theory made some people doubtful of long-used and familiar mathematical
notions, but mathematical practice continued as usual without being ham-
pered by this foundational crisis. Many inventive and innovative solutions
have been proposed to avoid the paradox, to resolve it or to make its con-
sequences harmless. One such way, initially suggested by Russell, was type
theory, which has found fruitful applications to natural language (e.g. in
Montague Grammar; see Part D), as well as in the context of programming
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languages and their semantics, but it is beyond the scope of this book to
discuss the type theories in general or any of the various other solutions to
the set-theoretic paradoxes (see, however, the axiomatization of set theory
in Chapter 8, section 2).

Recursive rules: Since finite sets specified simply by listing their mem-
bers can never lead to such paradoxes, no changes had to be made for them.
For infinite sets, the simplest way to avoid such paradoxes and still be able
to define most sets of relevance to ordinary mathematics is to provide a rule
for generating elements “recursively” from a finite basis. For example, the
set £ = {4,6,8,...} (=(1-8)=(1-9)) can be generated by the following rule:

(1-11) a)4c E
b)Ifze E,thenz+2€ F
¢) Nothing else belongs to E.

The first part of the rule specifies that 4 is a member of E; by applying
the second part of the rule over and over, one ascertains that since 4 € F,
then 6 € E; since 6 € F, then 8 € E; etc. The third part insures that no
number is in E except in virtue of @ and b.

A rule for generating the members of a set has the following form: first,
a finite number of members (often just one) are stated explicitly to belong to
the set; then a finite number of if-then statements specifying some relation
between members of the set are given, so that any member of the set can be
reached by a chain of if-then statements starting from one of the members
specified in the first part of the rule, and nothing that is not in the set can
be reached by such a chain. We will consider such recursive devices in more
detail in Chapter 8, section 1.1.

The earlier method of specifying a set by giving a defining property
for its members has not been abandoned in practice, since it is often quite
convenient and since paradoxical cases do not arise in the usual mathematical

applications of set theory. Outside of specialized works on set theory itself,
both methods are commonrly used.

1.3 Set-theoretic identity and cardinality

We have already seen that different lists or different predicates may specify
the same set. Implicitly we have assumed a notion of identity for sets which
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is one of the fundamental assumptions of set theory: two sets are identical
if and only if they have exactly the same members. For instance,

(1-12) {1,2,3,4,5,6}

and

(1-13) {z | z is a positive integer less than 7}
and

(1-14) a)le 4
b)if z € A and z is less than 6, then z + 1 € A
c) nothing else is in A

are three different kinds of specifications, but because each picks out exactly
the same members, we say that they specify the same set. We use the equals
sign ‘=" for set-theoretic identity. Thus we may write, for example,

(1-15) {1,2,3,4,5,6} = {z | z is a positive integer less than 7}

The equals sign is also used in naming sets. For example, we might write
Tet B = {1,2,3,4,5,6)" to assign the name ‘B’ to the set in (1-12). The
context will make it clear whether ‘="1is being used to stipulate the name of
a set or to assert that two previously specified sets are identical.

A consequence of this notion of set-theoretic identity is that the empty
set is unique, as its identity is fully determined by its absence of members.
Thus the set of square circles and the set of non-self-identical things are the
same set. Note that the empty list notation ‘{}’ is never used for the empty
set, but we have a special symbol ‘@’ for it.

The number of members in a set A is called the cardinality of A, written
|A| or #(A). The cardinality of a finite set is given by one of the natural
numbers. For example, the set defined in (1-12) has cardinality 6, and since
(1-13) and (1-14) describe the same set, they describe sets of the same car-
dinality (of course distinct sets may also have the same cardinality). Infinite
sets, too, have cardinalities, but they are not natural numbers. For exam-
ple, the set of natural numbers itself has cardinality ‘aleph-zero’, written Ro,
which is not a natural number. We will take up the subject of infinite sets
in more detail in Chapter 4.
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1.4 Subsets -

When every member of a set A is also a member of a set B we call 4 a
subset of B. We denote such a relation between sets by A C B. Note that
B may contain other members besides those of A, but this is not necessarily
so. Thus the subset relation allows any set to be a subset of itself. If we
want to exclude the case of a set being a subset of itself, the notion is called
proper subset, and written as A C B. For the denial of the subset relation
we put a slash across the subset symbol, e.g., A € B means that A4 is not a
subset of B, hence that A has at least one member which is not a member
of B.

The following examples illustrate these concepts.

(1-16) a) {a,b,c} C {s,b,a,¢,9,i,¢}
ﬁvv ﬁguvw-ﬂ.w m A%u@ugumubuﬂ.uﬁv .
c) {a,b,c} C {s,b,a,e,9,i,c}
d) 0 C {a}
e) {a,{a}} C {a,b,{a}}
f) {{a}} Z {a}
g) {a} Z {{a}}, but {a} € {{a}} ("

A curious consequence of the definition of subset is that the null set is
a subset of every set. That is, for any set A whatever, ® C A. Since 0
has no members, the statement that every member of @ is also a member of
A holds, even if vacuously. Alternatively, we could reason as follows. How
could @ fail to be a subset of A? According to the definition of subset, there
would have to be some member in @) that is not also a member of A. This is
impossible since () has no members at all, and so we cannot maintain that
0 Z A. Since the argument does not depend in any way on what particular
set is represented by A, it is true that § C A for every A.

Note, however, that while § C {a}, for example {0} ¢ {a}. The set {§}
has a member, namely §, and therefore is not the empty set. It.is not true
that every member of {}} is also a member of {a}, so {0} Z {a}.

Members of sets and subsets of sets both represent relationships of a

part to a whole, but these relationships are quite different, and it is im-
portant not to confuse them. Subsets, as the name suggests, are always
sets, whereas members may or may not be. Mars is a member of the set
{Earth, Venus, Mars} but not a subset of it. The set containing Mars as its
only member, {Mars}, is a subset of {Earth, Venus, Mars} because every
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member of the former is also a member of the latter. Further, whereas every
set is a subset of itself, it is not clear whether a set can ever be a member
of itself, as we saw above in the discussion of Russell’s Paradox. Note how
important it is here to distinguish between Mars, the planet, and {Mars},
the set.

Sets with sets as members provide the most opportunities for confusion.
Consider, for example, the set A = {b, {c}}. The members of A are b and {c}.
From the considerations in the preceding paragraph we see that b ¢ A and
{8} C A. Similarly, {¢} € A because ¢ is not a member of 4, and {{c}} C 4
because every member of {{c}}, namely, {c}, is a member of A. The reader
should also verify the following statements concerning this example: {b} ¢ A4;
cg A; {{c}} & A; {b,{c}} C 4; {b,{c}} & A; {{b,{c}}} £ A.

Another difference between subsets and members has to do with our
previous remarks about sets of sets. We have seen thatif b € X and X € C,
it does not necessarily follow that b € cal C. The element b could be a
member of cal C, but if so this would be an accidental property of C, not a
necessary one. With inclusion, however,if A C B and B C C, it is necessarily
true that A C C; that is, if every member of A is also a member of B, and
further if every member of B is also a member of C, then it must be true
that every member of A is also a member of C. For example, {a} C {a,b}
and {a,b} C {a,b,c} so it follows that {a} C {a,b,c}. On the other hand,
a € {a} and {a} € {{a},b}, but a & {{a}, b} (assuming of course that a and
b are distinct).

1.5 Power sets

Sometimes we need to refer to the set whose members are all the subsets of a
given set A. This set is called the power set of A, which we will write as p(A).
Suppose A = {a,b}; then the power set of 4, p(A4), is {{a}, {6}, {a,b},0}.
The name ‘power set’ derives from the fact that if the cardinality of A is
some natural number n, then p(A4) has cardinality 27, i.e., 2 raised to the
n power, or 2 X 2 X 2 X ... X 2 (n times). Sometimes the power set of A is
denoted as 24. .

1.6 Union and intersection

We now introduce two operations which take a pair of sets and produce
another set.
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The union of two sets A and B, written AU B, is the set where members
are just the objects which are members of A or of B or of both. In the
predicate notation the definition is

(1-17) mcmn&m\? |z € Aorz e B}

3 ?

Note that the disjunction ‘or’ in (1-17) allows an ob ject to be a member
of both A and B. For this reason, the ‘or’ is an inclusive disjunction (see
Chapter 6, section 2). For example,

(1-18) Let K = {a,b}, L = {c,d} and M = {b,d}, then

KulL = {a,b,c,d}

KuM = {a,b,d}

LuM = {bc,d}

(KUL)UM = KU(LUM) = {a,b,¢,d}
Kupd = ﬁﬂuvw = K

Lup = {c,d} = L

Set-theoretic union can easily be generalized to apply to more than two
sets, in which case we write the union sign in front of the set of sets to
be operated on: e.g. [{K,L,M} = the set of all elements in K or [
or M = {a,b,c,d}. There is a nice method for visually representing set-
theoretic operations, called Venn diagrams. Each set is drawn as a circle
and its members are represented by points within it. The diagrams for two
arbitrarily chosen sets are represented as partially intersecting ~ the most
general case — as in Figure 1-1. The region designated ‘1’ contains elements
which are members of A but not of B; region 2, those things in B but not in
A; and region 3, members of both B and A. Points in region 4 outside the
diagram represent elements in neither set. Of course in particular instances
one or more of these regions might turn out to be empty.

The Venn diagram for the union of A and B is then made by delineating
all the regions contained in this set — shown in Figure 1-2 by shading areas
1,2, and 3.

The second operation on arbitrary sets A and B produces a set whose
members are just the members of both A and B. This operation is called
the intersection of A and B, written as AN B. In predicate notation this
operation would be defined as

UNION AND INTERSECTION

Figure 1-1: Venn diagram of two arbitrary
sets A and B

Figure 1-2: Set-theoretic union AU B

13
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(1-19) AnB H&&.:? |z € Aand z € B}

For example, the intersection of the sets K and M of (1-18) is simply the
singleton {b}, since b is the only object which is both a member of K and a
member of M. Here are some more examples:

(120) KnL =0
LnM = {d}
KnK = {a,b} . = K
Kno = 0
(EnL)nM = Kn(LnM) = 0
Kn(LuM) = {b}

The general case of intersection of arbitrary sets A and B is represented
by the Venn diagram of Figure 1-3.

Figure 1-3: Set-theoretic intersection AN B

Intersection may also be generalized to apply to three or more sets; e.g.,
({K,L,M} = 0. The intersection of three arbitrary sets 4, B and C is
shown in the Venn diagram of Figure 1-4. Here the black area represents
what is common to the tegions for AN B, BN C and AN C. Obviously
when more than three sets are involved, the Venn diagrams become very
complex and of little use, but for simple cases they are a valuable visual aid
in understanding set-theoretic concepts.

Problem: Construct a Venn diagram for the union of three arbitrary sets.
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Figure 1-4: Venn diagram for {4, B,C}
(AN B, BNC and ANC (shaded) and
N{4, B,C} (black))

1.7 Difference and complement

Another binary operation on arbitrary sets A and B is the difference, written
A — B, which ‘subtracts’ from A all objects which are in B. The predicate
notation defines this operation as follows:

(1-21) A-B Hm&;a |z € Aand z ¢ B}

A— B is also called the relative complement of A and B. For instance for the
particular sets L and M, given in (1-18), L — M = {c}, since c is the only
member of L which is not a member of M. If A and B have no members in
common, then nothing is taken from 4;i.e., A— B = A. Note that although
for all sets A, B: AUB = BUA and ANB = BNA, it is not generally true
that A— B = B — A. If one thinks of difference as a kind of subtraction, the
fact that the order of the sets matters in this case is quite natural.

The Venn diagram for the set-theoretic difference A — B is shown in
Figure 1-5.

Some more examples:
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Figure 1-5: Set-theoretic difference A — B

(1-22) K-M = {a}

L-K = {ed} = L
M-L = {b}
K-0 = {ab} = K
p—-K =0

This operation is to be distinguished from the complement of a set A,
written A’, which is the set consisting of everything not in A. In predicate
notation

(1-23) A’ = def {z |z ¢ A}

Where do these objects come from which do not belong to A? The answer
is that every statement involving sets is made against a background of as-
sumed objects which comprise the universe (or domain) of discourse for
that discussion. In talking about number theory, for example, the universe
might be taken as the set of all positive and negative real numbers. A truly
universal domain of discourse fixed once and for all, which would contain
literally ‘everything’ out of which sets might be composed, is unfortunately
impossible since it would contain paradoxical objects such as ‘the set of all
sets’. Therefore, the universe of discourse varies with the discussion, much as
the interpretation of the English words ‘everything’ and ‘everyone’ tends to
be implicitly restricted by the context of discourse. When no other specified
name has been given to the universe of discourse in a particular discussion,
we conventionally use the symbol U for it. When it is clear from the con-
text or irrelevant to the discussion at hand, the universe of discourse may

SET-THEORETIC EQUALITIES 17

not be explicitly mentioned at all, but the operation of complement is not
well-defined without it. The complement of a set A, then, is the set of all
objects in the universe of discourse which are not in A4, i.e.,

(1-24) A'=U-A
We see that in (1-23) the variable z in the predicate notation is implicitly

understood to range over (i.e., take its values from) the set-theoretic universe
U (and the same is true, incidentally, in (1-17) and (1-19)).

The Venn diagram with a shaded section for the complement of A is
shown in Figure 1-6.

'Q

\\\\\\\\\

Figure 1-6: The set-theoretic complement A’

1.8 Set-theoretic equalities

There are a number of general laws pertaining to sets which follow from the
foregoing definitions of union, intersection, subset, etc. A useful selection of
these is shown in Figure 1-7, where they are grouped (generally in pairs — one
for union, one for intersection) under their more or less traditional names.
We are not yet in a position to offer formal proofs that these statements really
do hold for any arbitrarily chosen sets X, Y, and Z (we will take this up in
Chapter 7, section 6), but for now we may perhaps try to convince ourselves
of their truth by reflecting on the relevant definitions or constructing some
Venn diagrams.
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Idempotent Laws
(a) XuX=X b) XnX=X

Commutative Laws

(a) XUY=YuUX (b) XnY=YnX

Associative Laws

(a) (XUY)uZ=XU(Yuz) (b) (XnY)NnZ=Xn((¥n2z)
Distributive Laws

(a) XUu¥n2Z)=(XuY)n(xXu2z)

(b) Xn(YuzZ)=(XnY)u(Xn2)

Identity Laws

(a) Xub=X (¢) Xnd=20

(b XuU=U (d) XnU=X
Complement Laws

(a) XuX'=U (¢) XnX'=90

b)) XY=X d X-Y=XnY'

DeMorgan’s Laws
(a) (XuYyY=X'nY’ (b) (XnYY=X'uYy’

Consistency Principle

{a) XCYifXuY=Y (b)) XCYifXnY =X

Figure 1-7: Some fundamental set-theoretic
equalities

SET-THEORETIC EQUALITIES 19

It is easy to see that for any set X, X U X is the same as X, since
everything which is in X or in X simply amounts to everything which is in
X. And similarly for everything which is in X and in X,s0 X N X = X.

Likewise, everything which is in X or in Y (or both) is the same as
everything which is in ¥ or in X (or both); thus, X UY =Y U X. The
argument for intersection is similar.

" The Associative Laws state that the order in which we combine three
sets by the operation of union does not matter, and the same is true if the
operation is intersection. To see that these hold, imagine the construction of
the appropriate Venn diagrams. We have three intersecting circles labelled
X,Y,and Z. We shade X UY first and then shade Z. The result is shading
of the entire area inside the three circles, and this corresponds to (XUY)UZ.
Now we start over and shade Y U Z first and then X. The result is the same.

The construction of the Venn diagrams to illustrate the Distributive Laws
is somewhat trickier. In Figure 1-8 we show a Venn diagram for X N(Y U Z).
To make it more perspicuous, X has been shaded with vertical lines and
Y U Z horizontally. The intersection of these two sets is then represented
by the cross-hatched area. Figure 1-9 shows the corresponding diagram for
(XNY)U(XNZ). XNY is shaded vertically and X N Z horizontally; thus,
the union is represented by the area shaded in either (or both) directions.
The reader should now be able to construct the Venn diagram for case (a)
of the Distributive Laws. ,

The Identity Laws are evident from the definitions of union, intersection,
the null set, and the universal set. Everything which is in X or in D just
amounts to everything which is in X, etc. The Complement Laws are likewise
easily grasped from the definitions of complement with perhaps a look at
the Venn diagram in Figure 1-6. Case (d) becomes less baffling if we look
at Figure 1-5 and consider the area corresponding to the intersection of A
with the complement of B.

DeMorgan’s Laws are a symmetrical pair. Case (a): everything which is
in neither X nor Y is the same as everything which is not in X and not in
Y. Case (b): everything which is not in both X and Y is either not in X or
not in Y (or in neither). This case is less immediately evident, and a Venn
diagram will help.

The Consistency Principle is so called because it is concerned with the
mutual consistency of the definitions of union, intersection, and subset. If
we think of a Venn diagram in which the circle for X lies entirely inside the
circle for Y (representing X C Y), then it is easy to see that X UY =Y.
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Figure 1-8: Venn diagram for X n (Y U Z)
(X shaded vertically, Y U Z shaded
horizontally, X N (Y U Z) cross-hatched)

Figure 1-9: Venn diagram for
(XnY)u(Xnz
(X NY shaded vertically, X N Z shaded
horizontally, (X NY)U (X N Z) the entire
shaded area)
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On the other hand, if we know that X UY =Y, then in the standard Venn
diagram the region corresponding to elements which are in X but notin Y
must be empty (otherwise, the union would not be equal to Y). Thus, X’s
members lie entirely in the Y circle; so X C Y. The (b) case is similar.

It may help in getting a grasp on some of these laws if one considers ana-

logues from algebra. The operations of + (addition) and * (multiplication)

obey a commutative law:
(1-25) for all numbers z,y, z+y=y+=2 and z*xy=yx*z
and an associative law:

(1-26) for all numbers z, y, 2, (z+y)+z=z+@y+z)and (zxy)*2z=
z*(y*2)

but neither is idempotent: in general it is not true that z + z = z nor that
2+ z = z. However, there is a distributive law relating * and 4+ as follows:

(1-27) for all numbers &, y, z, z* (y+2)=(z*+y)+ (zx2)

but no such law holds if * and + are interchanged; i.e., it is not in general
true that @ + (y * z) = (z + y)* (z +2). (For example, let z =1,y = 2, and
z = 3; then the left side is 7 and the right side is 12.)

Arithmetic analogues of the Identity Laws arez +0 =z, 2 %0 =0, and
z *1 = z with 0 playing the role of the null set and 1 that of the universal
set. (But this analogy, too, breaks down: z +1 does not equal 1.)

What we have seen then is that there is an algebra of sets which is
in some respects analogous to the familiar algebra involving addition and
multiplication but which has its own peculiar properties as well. We will
encounter this structure once more when we take up the logic of statements
in Chapter 6, and we will discover in Chapter 12 that both are instances of
what is called a Boolean algebra.

For the moment our concern is not with the structure of this algebra
but rather to show how these equalities can be used in the manipulation of
set-theoretic expressions. The idea is that in any set-theoretic expression
a set may always be replaced by one equal to it. The result will then be
an expression which denotes the same set as the original expression. For
example, in AN (BUC) we may replace (BUC)' by its equivalent, B'NC’
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(citing DeMorgan’s Laws), to obtain AN(B'NC’). Since (BUCY and B'nC’
have the same members, so do AN(BUC) and An(B' NC’).

This technique can be used to simplify a complex set-theoretic expres-
sion, as in (1-28) below, or to demonstrate the truth of other statements
about sets, as in (1-29) and (1-30). It is usually convenient to arrange such
demonstrations as a vertical sequence in which each line is justified by ref-
erence to the law employed in deriving it from the preceding line.

(1-28)

Ezample: Simplify the expression (AU B)U (BN CY
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1. (XnY)n(XuY)

2. (XnY)nX)u((Xn Y)nY) Distr.

3. (XnXnY)Hu(Xxn Y)nY) Comm.

4. (XnX)nY)u((xn Y)nY) Assoc.

5. (XnX)nY)u(Xxn (Y nY)) Assoc. .

6. (XnY)u(XnY) Idemp. (twice)
7. XnY Idemp.

Such arrays constitute formal proofs (of the fact that, in each of ﬁamo
cases, the set in the last line is equal to that in the first line.) We will
take up the topic of proofs in due course, but the reader who attempts such
derivations in the exercises will no doubt encounter a notoriously trouble-

1
W MM m NW m MWMDO%\V DeM. some problem connected with Eo&m.w namely, while :. is relatively simple to
3. AU(BU(B'UC) Assoc. verify that a given proof is correct, it may be very difficult to mb@ ermonw
4. AU((BUB)UC) Assoc. one wants. So if presented with a EoEmB. such as (1-29), one B_mﬂ“ .@<M
5 Au(UucC) Compl. to try many unsuccessful paths before mu&.sm one 25.« Kmumm to the mmﬁm
6. Au(C'uUU) Comm. final expression. A certain amount of cutting and trying is therefore to be
7. AUU Ident. expected.
8. U Ident. .
Exercises
(1-29) Ezample: Show that (ANB)N(ANC)Y = AN(B - C).
1. Given the following sets:

1. (AnB)n(AnCY A = {a,bec23,4 E = {a,b,{c}}

2. (ANB)n(AuC) DeM. B = {a,b} F =0

3. An(Bn{4'uC) Assoc. c = {2} G = {{a,b},{c.2}}

4. An((BnAHYUu(BnC") Distr. D = {bc}

5 (An(BnAY)U(An(BNC')) Distr.

6. (AN(A'NnB)U(AN(BNC)) Comm. classify each of the following statements as true or false

7. ((ANA)NB)U(AN(BNC") Assoc. (a) c€A (g) DcA (m) BSG

8. (DnBYU(AN(BNC)) Compl. (b) ce F (b)) ACC (n) {B}CG

9. (BNO)U(AN(BNC) Comm. (c) ceE () DCE (o) DCG
10. fu(An(BnC)) Ident. (d) {JeE () Fc4a (p) {DICEC
11. (An(BnCH)ub Comm. () {c}eC (k) ECF (q) GCA
12. An(Bn¢C) Ident. (f) Bca () BeG () {{J}EF
13. An(B-C) Compl. .

2. For any arbitrary set S,

(1-30) FEzample: Show that X NY C X UY. (a) is S a member of {§}?

(b) is {S} a member of {§}?

By the Consistency Principle this expression is true iff (X NY)n(XUY) =
(c) is {S} a subset of {S}?

X NnY. We demonstrate the latter.
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(d) what is the set whose only member is {§}?

3. Write a specification by rules and one by predicates for each of the
following sets. Remember that there is no order assumed in the list,
so you cannot use words like ‘the first’ or ‘the latter’. Recall also that
a recursive rule may contain more than one if-then statement.

(a) {5,10,15,20,...}

(b) {7,17,27,37,.. }

(¢) {300,301,302,...,399,400}

(d) {3,4,7,8,11,12,15,16,19,20,.. .}
(e) {0,2,-2,4,-4,6,-6,...)

(f) {1,1/2,1/4,1/8,1/16,...}

4. Consider the following sets:

S1 = mﬁswvﬁxﬁw‘\:\ 56 = 0

52 = A §71 = {0}
53 = {4} 58 = {{0}}
54 = {{4}} 59 = {0,{0}}
55 = {{4}, A}

Answer the following questions. Remember that the members of a
set are the items separated by commas, if there is more than one,
between the outermost braces only; a subset is formed by enclosing

within braces zero or .more of the members of a given set, separated
by commas.

(a) Of the sets S1 - §9 which are members of §1?
(b) which are subsets of §17

(c¢) which are members of §9?

(d) which are subsets of $97?

(e) which are members of §4?

(f) which are subsets of 547
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5. Specify each of the following sets by listing its members:

(a) p({a,b,¢}) (d) p({0})

(b) p({a}) (e) p(p({a,b}))
() (@)
6. Given the sets A,...,G as in Exercise 1, list the members of each of

the following:

(a) BuC (g) ANE (m) B-A
(b) AUB (h) CnD (n) C-D
(¢) DUE (i) BNF (o) E-
(d) BuG () CnE (p) F-
() DuF (k) BNnG. (q) G-
(f) AnB () A-B

by b

7. Given the sets in Exercise 1, assume that the universe of discourse is
CT», B,C,D, E,F,GY}. List the members of the following sets:

(a) (AnB)uC - (h) D'nE

(b) An(BUC) (i) Fn(A-B)
(¢) (BUC)-(CUD) (3) (AnB)uUU
(d) An(C-D) (x) (CuDb)nU
(e) (AnC)-(AnD) () CnD

) ¢ (m) GUF' \
(8) (DUEY (n) (BNC)

8. Let A = {a,b,c}, B = {c,d} and C = {d;e, f}.

(a) What are:

i (v) Bubd

Ammw wa (vi) An(BNnC)
(i) AU(BNO) (viiy A-B
(iv) Cu4d

(b) Is a a member of {4, B}?
(¢) Is a a member of AU B?

9. Show by using the set-theoretic equalities in Figure 1-7 for any sets A,
B, and C,

(a) ((AUC)N(BUC")C (AU B)
(b) AN(B—-A4)=0
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10.

11.

12.
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Show that the Distributive Law 4(a) is true by constructing Venn di-
agrams for X U(Y N Z) and (XUY)N(X U Z2).

The symmetric difference of two sets A and B, denoted A 4 B, is
defined as the set whose members are in A or in B but not in both A
and B, i.e.

\~+mﬂkm\A\»CmvlTADmv

(a) Draw the Venn diagram for the symmetric difference of two sets.

(b) Show that A+ B = (A- B)U (B — A) by means of the set-
theoretic equalities in Figure 1-7. Verify that the Venn diagram
for (A — B) U (B — A) is equivalent to that in (a).
(c) Show that for all sets A and B, A+ B = B + A.
(d) Express each of the following in terms of union, intersection, and
complementation, and simplify using the set-theoretic equalities.
() A+A (iv) A+ B,where ACB
(i) A+U (v) A+B,where ANB=10
(i) A+0
(e) Show that (A—B)+(B-A))=A+ B
(f) Show that (A+B)C Bif ACB

Call adjectives which are correctly predicated of themselves ‘autolog-
ical’ and those which are not, ‘heterological’. For example, ‘English’

‘and ‘short’ are autological, but ‘French’ and ‘long’ are heterological.

Show that when we ask whether the adjective ‘heterological’ is hetero-
logical or autological we are led to a contradiction like that in Russell’s -
Paradox. This is known as Grelling’s Paradox.




