
Notes on a situation-free fragment for donkey anaphora
Chris Barker, NYU, homepages.nyu.edu/∼cb125

Introduction. These notes were produced at the request of Chris Kennedy,
for the purpose of providing something to look at in advance of a visit to
Chicago on 25 May. My remarks will have two main goals: a critique the
D-type approach to donkey anaphora, as championed by Elbourne in his
excellent 2005 book; and a presentation of an alternative analysis based on
continuations, as developed by me and my collaborator Chung-chieh Shan
(Rutgers). These notes will expire at the end of May 2007. If you want a
more up-to-date version, please contact me at chris.barker@nyu.edu. Feel
free to ask questions in advance of the visit—

My comments on Elbourne will not be difficult to follow, especially if you
are familiar with the literature on donkey anaphora. Elbourne’s first chapter
provides a superb general discussion that introduces most of the issues and
much of the data I will be evaluating. The presentation of the Barker-Shan
fragment, however, will be more challenging to follow, since it will be unfa-
miliar to most people in the audience. Therefore this note will concentrate
on presenting the fragment, up to the traditional donkey sentence.

The main competitors to the D-type analysis considered by Elbourne are
Dynamic Predicate Logic (DPL), and Jacobson’s variable-free framework.
One of the more telling objections to the DPL approach involves disjustion
(e.g., If a farmer owns a donkey or a goat, he beats nit), and I will discuss
disjunctive examples in some detail. I will suggest that although Elbourne’s
criticisms of DPL are telling, they involve aspects of the DPL system that
are not essential to a dynamic approach. Therefore Elbourne does not argue
that dynamic accounts of anaphora are misguided, and in fact, I will suggest
that anaphora is clearly dynamic. The fragment I will present is dynamic in
the relevant sense.

There is a presentation of the current fragment in a more developed pa-
per available on the semantics archive (‘Reconstruction as delayed evalua-
tion’). For the conceptual motivation for continuations, see my 2002 Nat-
ural Language Semantics paper (‘Continuations and the nature of quantifi-
cation’). For a discussion of the fragment presented below to binding and
weak crossover, see Shan and Barker’s 2006 paper in Linguistics and Phi-
losophy (‘Explaining crossover and superiority as left-to-right evaluation’).

1

2

Simple combination. We’ll stack information about each expression like
this:

DP
John

j

syntactic category
expression

semantic value

In the simplest case, syntactic combination reduces to standard combinatory
categorial grammar: DP

John
j

DP\S
left
left

 =
S

John left
left j

As usual, the category under the slash (here, “DP”) cancels with the cate-
gory of the argument expression; the semantics is functional application.

Quantification: Quantificational expressions have an extra layer on top of
their syntactic category (likewise on top of their semantic value):

S S
DP

everyone
∀y[]

y

Read the syntactic category counterclockwise:

S S
DP

means
...to form an S. and takes scope over an S...

Replaces a DP,
For example:

S S
DP

everyone
∀y[]

y

S S
DP\S
left
[]

left

 =

S S
S

everyone left
∀y[]

left y

In the general case, we have:
C D
A/B
left
g[]

f

D E
B

right
h[]

x

 =

C E
A

left right
g[h[]]

f(x)

13

Below the horizontal line, combination is simple combinatory categorial
grammar (i.e., below the line, we have A/B combining with B to form an
A; in the semantics, f combines with x to form f(x)).
Above the line is likewise a cancellation operation: here, the D on the left
cancels with the D on the right. Semantically, we insert the rightmost mean-
ing element inside the brackets of the leftmost meaning element (i.e., g[]
combines with h[] to form g[h[]]). The fact that the meaning of the left-
most element surrounds the meaning of the rightmost element expresses the
generalization that the default order of semantic evaluation is left-to-right.

Type shifter 1 of 3: Lift: Comparing the analysis above of John left with
Everyone left reveals two distinct analyses of left. The simpler one is the
basic lexical entry, and the more complex one that participates in a quantifi-
cational sentence is derived through a standard type-shifter called Lift.

DP\S
left
left

Lift⇒
S S
DP\S
left
[]

left

In general:

A
expression

x

Lift⇒
α α

A
expression

[]

x

Syntactically, Lift adds a layer with arbitrary (but matching!) syntactic cat-
egories. Semantically, it adds empty brackets, which amount to a null se-
mantic operation (i.e., application of the identity function); we often will
omit writing “[]” in the semantic values.

Type shifter 2 of 3: Lower: The final semantic value given above for

Everyone left was
∀x.[]

left x
. In order to arrive at a traditional representation

(i.e., one that is not split across two levels), we introduce the type-shifter
Lower:

4

α S
S

expression
f[]

x

Lower⇒ α

expression
f[x]

It is syntactically important that Lower is more specific than Lift: Lower
applies only when the two matching categories are S. Applying Lower to
the analysis above for Everyone left gives

S S
S

everyone left
∀y[]

left y

Lower⇒ S
everyone left
∀y.left y

Lower collapses at two-level meaning into a single level by inserting the
semantic material below the line into the brackets above the line. Note that
this substitution is variable-capturing! Further technical details are given in
my manuscript ‘Reconstruction as delayed evaluation’ (available at seman-
ticsarchive.net).

Pop quiz: Compute the syntactic category and the semantic value of the
following sentence:

S S
DP

someone
∃x[]

x

S S
(DP\S)/DP

loves
[]

loves

S S
DP

everyone
∀y[]

y

 = S.o. loves e.o. Lower⇒ S.o. loves e.o.

Show your cancellations. What is the relative scoping of the two quanti-
fiers? Hint: proceed stepwise, following the syntax (do the VP first).

Pronouns: Pronouns create functional dependendies in the way argued for
by Jacobson in recent work.

α α

DP
he

λy[]

y

15

For instance, we have

DP B S S
DP
he

λy[]

y

S S
DP\S
left
[]

left

=

DP B S S
S

He left
λy[]

left y

Lower⇒ DP B S
He left

λy.left y

Type shifter 3 of 3: Binding: Binding allows an arbitrary DP to control the
value of a pronoun—provided (only very roughly!) that the DP precedes the
pronoun.

α β

DP
expression

f[]

x

Bind⇒
α DP B β

DP
expression

f([]x)

x

Syntactically, the binding rule annotates the top right syntactic category
with “DPB”, announcing the presence of a binder for any downstream pro-
nouns. Semantically, it makes a copy of the value of the DP and makes it
available to the downstream pronoun. For instance, applying Bind to every-
one, we have

S S
DP

everyone
∀x.[]

x

Bind⇒
S DP B S

DP
everyone
∀x.([]x)

x

This gives us

S DP B S
DP

everyone
∀x.([]x)

x

DP B S DP B S

(DP\S)/DP
loves

loves

DP B S S

DP
his
λy[]

y

S S
DP\DP
mother

mom

6

=

S S
S

∀ loves his mom
∀x.([λy.[]]x)

loves(mom y) x

Lower⇒ S
∀lhm

∀x.([λy.[loves(mom y) x]]x)

This lowered value reduces to ∀x.loves(mom x) x.

Binding out of DP: S DPBS
DP

everyone’s
DP\DP
mother

 (DP\S)/DP
loves

DPBS S
DP

him

Interpretation: ∀y.lovesy(mom y). Nothing special need be said. Thus
in this system, c-command is not required for binding.

Weak crossover: DPBS S
DP
his

DP\DP
mother

 (DP\S)/DP
loves

S DPBS
DP

everyone

 =

DPBS DPBS
S

Hml∀
The problem with this final category is that it cannot be lowered into a
single-level analysis. The reason is that the trigger for the Lower rule isn’t
met, since lowering requires the top right category to be S. The pronoun
is looking leftward for an antecedent, the binder is looking rightward for a
pronoun to bind, and they never find each other.

17

D
onkey

C
onditionals:

(S
/S

)/S
ifif

S
D

P
B

S

D
P

a
farm

er
∃
x
.(fa

r
x
)
∧

([
]x

)

x

(D
P
\S

)/D
P

ow
ns

o
w

n
s

S
D

P
B

S
D

P
a

donkey

∃
y
.(d

o
n

y
)
∧

([
]y

)

y

D
P

B
S

S

D
P

he
λ
z
.[

]

z

(D
P
\S

)/D
P

beats

b
e
a
ts

D
P

B
S

S
D

P
it

λ
w

.[
]

w

=

S
S

S
S

S
Ifa

farm
er

ow
ns

a
donkey

he
beats

it
∃
x
.(fa

r
x
)
∧

([λ
z
.[

]]x
)

∃
y
.(d

o
n

y
)
∧

([λ
w

.[
]]y

)

if(o
w

n
s

y
x
)(b

e
a
ts

w
z)

L
ow

er
⇒

S
S

S
Ifa

farm
er

ow
ns

a
donkey

he
beats

it
∃
x
.(fa

r
x
)
∧

([λ
z
.[

]]x
)

∃
y
.(d

o
n

y
)
∧

([λ
w

.[if(o
w

n
s

y
x
)(b

e
a
ts

w
z)]]y

)

=

S
S

S
Ifa

farm
er

ow
ns

a
donkey

he
beats

it
∃
x
.(fa

r
x
)
∧

([λ
z
.[

]]x
)

∃
y
.(d

o
n

y
)
∧

[if(o
w

n
s

y
x
)(b

e
a
ts

y
z)]

L
ow

er
⇒

S
Ifa

farm
er

ow
ns

a
donkey

he
beats

it
∃
x
.(fa

r
x
)
∧

([λ
z
.[∃

y
.(d

o
n

y
)
∧

[if(o
w

n
s

y
x
)(b

e
a
ts

y
z)]]]x

)

=
∃
x
.(fa

r
x
)
∧

[∃
y
.(d

o
n

y
)
∧

[if(o
w

n
s

y
x
)(b

e
a
ts

y
x
)]]

B
ishop

sentences
w

ork
exactly

the
sam

e
w

ay
(Ifa

bishop
m

eets
a

bishop,he
blesses

him
).

8

What is missing: inverse scope (inner application of Lift). Scope bounding
and scope islands. Binding of multiple pronouns. Generalized disjunction,
existential disjunction.

