Semantics 1

A toy semantics for a fragment of English

Notation

- (1) a. 1 = true
 - b. 0 = false
 - c. $\llbracket \ \rrbracket =$ the interpretation function; $\llbracket \alpha \rrbracket =$ the denotation of α
 - d. set theory

Lexical items

- (2) a. $\llbracket \operatorname{Kim} \rrbracket = \operatorname{Kim}$
 - b. $\llbracket \operatorname{run} \rrbracket = \{x \mid x \operatorname{runs}\}$
 - c. $\llbracket \text{smoke} \rrbracket = \{x \mid x \text{ smokes} \}$
 - d. $[not] = set complementation: <math>[not](A) = \{x \mid x \notin A\}$
 - e. $\llbracket and \rrbracket = set intersection: \llbracket and \rrbracket (A, B) = \{x \mid x \in A and x \in B\}$

Composition rules

$$(3)$$
 a. PREDICATION

If α is a constituent whose immediate subconstituents are β and γ , and if $\llbracket \beta \rrbracket$ is an individual and $\llbracket \gamma \rrbracket$ a set of individuals, then $\llbracket \alpha \rrbracket = 1$ if $\llbracket \beta \rrbracket \in \llbracket \gamma \rrbracket$ (if $\llbracket \beta \rrbracket$ is a member of $\llbracket \gamma \rrbracket$), and 0 otherwise.

b. 1-PLACE APPLICATION If α is a constituent whose immediate subconstituents are β and γ, and if [[β]] is a 1-place set-theoretic operation and [[γ]] is a set of individuals, then [[α]] = [[β]]([[γ]]). ([[α]]] is the result returned by applying [[β]] to [[γ]].) c. 2-PLACE APPLICATION

If α is a constituent whose immediate subconstituents are β , γ , and δ and if $[\![\beta]\!]$ is a 2-place set-theoretic operation and $[\![\gamma]\!]$ and $[\![\delta]\!]$ are sets of individuals, then $[\![\alpha]\!] = [\![\beta]\!]([\![\gamma]\!], [\![\delta]\!])$. ($[\![\alpha]\!]$ is the result returned by applying $[\![\beta]\!]$ to the pair $[\![\gamma]\!], [\![\delta]\!]$.)

Computing ('proving') truth conditions

