## A toy semantics for a fragment of English

## Notation

a. $\quad 1=$ true
b. $0=$ false
c. $\quad \llbracket \rrbracket=$ the interpretation function; $\llbracket \alpha \rrbracket=$ the denotation of $\alpha$
d. set theory

## Lexical items

a. $\quad \llbracket \mathrm{Kim} \rrbracket=\mathrm{Kim}$
b. $\quad$ rrun $\rrbracket=\{x \mid x$ runs $\}$
c. $\llbracket$ smoke】 $=\{x \mid x$ smokes $\}$
d. $\llbracket$ not $\rrbracket=$ set complementation: $\llbracket n o t \rrbracket(\mathrm{~A})=\{x \mid x \notin \mathrm{~A}\}$
e. $\llbracket$ and $\rrbracket=$ set intersection: $\llbracket$ and $\rrbracket(\mathrm{A}, \mathrm{B})=\{x \mid x \in \mathrm{~A}$ and $x \in \mathrm{~B}\}$

## Composition rules

a. PREDICATION

If $\alpha$ is a constituent whose immediate subconstituents are $\beta$ and $\gamma$, and if $\llbracket \beta \rrbracket$ is an individual and $\llbracket \gamma \rrbracket$ a set of individuals, then $\llbracket \alpha \rrbracket=1$ if $\llbracket \beta \rrbracket \in \llbracket \gamma \rrbracket$ (if $\llbracket \beta \rrbracket$ is a member of $\llbracket \gamma \rrbracket$ ), and 0 otherwise.
b. 1-PLACE APPLICATION

If $\alpha$ is a constituent whose immediate subconstituents are $\beta$ and $\gamma$, and if $\llbracket \beta \rrbracket$ is a 1 -place set-theoretic operation and $\llbracket \gamma \rrbracket$ is a set of individuals, then $\llbracket \alpha \rrbracket=\llbracket \beta \rrbracket(\llbracket \gamma \rrbracket)$. ( $\llbracket \alpha \rrbracket$ is the result returned by applying $\llbracket \beta \rrbracket$ to $\llbracket \gamma \rrbracket$.)
c. 2-PLACE APPLICATION

If $\alpha$ is a constituent whose immediate subconstituents are $\beta, \gamma$, and $\delta$ and if $\llbracket \beta \rrbracket$ is a 2-place set-theoretic operation and $\llbracket \gamma \rrbracket$ and $\llbracket \delta \rrbracket$ are sets of individuals, then $\llbracket \alpha \rrbracket=\llbracket \beta \rrbracket(\llbracket \gamma \rrbracket, \llbracket \delta \rrbracket) . \quad(\llbracket \alpha \rrbracket$ is the result returned by applying $\llbracket \beta \rrbracket$ to the pair $\llbracket \gamma \rrbracket, \llbracket \delta \rrbracket$.)

Computing ('proving') truth conditions
Kim
a. $\llbracket \mathrm{Kim} \rrbracket \in \llbracket \underbrace{}_{\text {not smoke }} \rrbracket$
b. $\quad \llbracket \operatorname{Kim} \rrbracket \in \llbracket \operatorname{not} \rrbracket(\llbracket$ smoke $\rrbracket)$
c. $\llbracket \mathrm{Kim} \rrbracket \in\{x \mid x \notin \llbracket$ smoke $\rrbracket\}$
d. $\llbracket \operatorname{Kim} \rrbracket \in\{x \mid x \notin\{y \mid y$ smokes $\}\}$
e. $\operatorname{Kim} \in\{x \mid x \notin\{y \mid y$ smokes $\}\}$
f. $\operatorname{Kim} \notin\{y \mid y$ smokes $\}$
... else 0.

