2 First Order Logic

2.1 REPRESENTATIONS FOR MEANINGS

To discuss the meanings of sentences and other expressions, we need a way
to represent them. Sentences written in ordinary writing are not reliable -
representations of their meanings, as written forms do not always capture
sameness and difference of meaning, for example:

(Da Rameses ruled Egypt.
b Egypt was ruled by Rameses.
¢ Visiting relatives can be boring.
d Visiting relatives can be boring.

Sentences (1a,b) have different written forms but the same meaning. Sen-
tences (1c,d) have the same written form but different meanings — one means
‘Relatives who are visiting one can be boring’ and the other means ‘It can be
boring to visit relatives’. So we need to represent meanings directly, and for
this we shall use a notation based on first order logic.

Logic is chiefly concerned with relationships between meanings, particu-
larly the meanings of declarative sentences, in processes of reasoning. The
meaning of a declarative sentence — the kind that can be used to make a
statement and can be true or false — is a proposition. To explore how
propositions are related to each other in reasoning, logic analyses their
inner structure. Propositional logic analyses certain ways of combining pro-
positions to form complex propositions. The expressions which are used to
combine propositions are the connectives, discussed in Section 2.2. Predicate
logic analyses the inner structure of simple propositions, which are formed of
predicates and their arguments, discussed in Section 2.3, and may also
contain quantifiers, which are discussed in Section 2.4.

2.2 THE LOGICAL CONNECTIVES

The logical connectives combine propositions to form more complex propo-
sitions in ways which correspond to certain uses of and, or, and if. We begin
with conjunction.

2.2.1 Conjunction

Conjunction is expressed by certain uses of and, illustrated below.
(2) Moira left and Harry stayed behind.
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In this sentence and joins the two sentences Moira left and Harry stayed
behind. The whole sentence is true if both the joined sentences are true, and
false otherwise. That is, it is false if they both left, or both stayed behind, or
if Harry left and Moira stayed behind. This pattern holds for any two
sentences joined by and: the truth value for the whole sentence depends on
the truth values for the parts.

(3)a  Alfred sings alto and Paul sings bass.
b There were lights showing and the door stood open.
¢ The airport was closed and all ferry trips were cancelled.

This general pattern is characteristic of logical connectives, which are truth-
functional: the truth value for a complex proposition formed with a truth-
functional connective can be calculated simply from the truth values of the
joined propositions, without referring to the content of the propositions.
Most natural language expressions for connecting sentences are not truth-
functional. The difference can be illustrated with because, as in (4).

(4)a Jill was late for work because her car broke down.
b Jill was late for work because she was caught in a traffic jam.

Suppose that Jill was late for work, her car broke down, and she was caught
in a traffic jam, so the component propositions in (4a) and (4b) are true. In
fact, Jill’s car broke down long before she had to leave for work so she took a
taxi, and if it hadn’t been for the traffic jam she would have arrived on time,
so (4a) is false and (4b) is true. We can’t calculate the truth or falsity of (4a,b)
simply by knowing whether or not the component propositions are true, We
have to know the CONTENT of the propositions combined by because to
Jjudge whether or not the circumstances described in the because-proposition
really caused the circumstances described in the other proposition. In short,
the truth of a proposition with because depends on more than just the truth
or falsity of the propositions which are combined, so because is not truth-
functional.

Propositional logic deals with truth-functional expressions. Four of these,
including conjunction, are connectives, because they connect two proposi-
tions. Propositional logic also deals with negation because it is truth-func-
tional as we shall see below, although it does not combine propositions and
therefore is not strictly a connective.

The conjunction connective is written with the symbol ‘&’ or ‘A’. The
symbol ‘&’ is used in this book. Propositions are represented by propositional
variables, traditionally p and g, with r and s added if needed. Complex
propositions formed by conjunction are also called conjunctions. Conjunc-
tions in general are represented by the formula p&q, where p and g stand for
any proposition.
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We can list all the possible combinations of truth values for p and q and
give the corresponding truth value for the conjunction p&q. In effect, this
defines the meaning of the conjunction connective. Such a definition is given
in the form of a table called a truth table.

(5) Truth table for conjunction

P q p&q
T T T
T F F
F T F
F F F

The order in which p and q are expressed makes no difference to the truth
value. The propositions p&q and q&p are equivalent: p&q always has the
same truth value as q&p, for any combination of truth values for p and q.
This doesn’t hold for all uses of the word and, but it does hold for the
examples in (2) and (3), repeated here.

(6)a Moira left and Harry stayed behind.
Harry stayed behind and Moira left.

b Alfred sings alto and Paul sings bass.
Paul sings bass and Alfred sings alto.

¢ There were lights showing and the door stood open.
The door stood open and there were lights showing.

d The airport was closed and all ferry trips were cancelled.
All ferry trips were cancelled and the airport was closed.

The conjunction connective only connects propositions, expressed by
sentences, but the word and can connect a wide range of types of expression.
Some of the sentences in which and connects expressions smaller than
sentences can be analysed as conjunction reduction, illustrated below. Con-
junction reduction is a linguistic abbreviation for what is logically a conjunc-
tion of whole propositions.

(7a [Moira and Harry] left.
b Tom saw [Moira and Harry].

¢ Moira was [changing her spark plugs and listening to talkback radio].

In (7a) and (7b) and connects two names, while in (7c) two verb phrases are
joined. Sentences like these can be analysed as instances of linguistic abbre-
viation:
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(8)a Moira and Harry left expresses ‘Moira left and Harry left’.
b Tom saw Moira and Harry expresses ‘Tom saw Moira and Tom saw
Harry’.
¢ Moira was changing her spark plugs and listening to talkback radio
expresses ‘Moira was changing her spark plugs and Moira was listen-
ing to talkback radio’.

Not all uses of and to join non-sentential expressions can be analysed as
conjunction reduction. The commonest exception is the use of and to form a
complex noun phrase which refers to a group, as in these examples.

(9)a Sally and Harry met for lunch.
b Sally, Harry, Jeff and Buzz met for lunch.
c Harry, Jeff and Buzz surrounded Charles.
d The gang met for lunch.
e The forest surrounded the castle.

At first sight it looks as if (9a) could be analysed as a conjunction of
propositions, ‘Harry met Sally for lunch and Sally met Harry for lunch’,
but the other examples indicate that this won’t work generally. In particular,
(9d) indicates that it is the group as a whole which meets, and so the noun
phrase Sally, Harry, Jeff and Buzz in (9b), for example, should be interpreted
as referring to the whole group of people. Similarly, (9¢) cannot be under-
stood to mean ‘Harry surrounded Charles and Jeff surrounded Charles and
Buzz surrounded Charles’, because ‘Harry surrounded Charles’ doesn’t
make sense — the three people as a group surrounded Charles. In these
instances the word and is not a connective at all as it doesn’t join sentences,
but forms a complex noun phrase referring to a group, which as a whole
performs the described action.

2.2.2 Negation

As above, negation is generally included with the logical connectives because
it is truth-functional, being defined by a truth table. Simply, negation
combines with a single proposition to reverse its truth value. The symbol
for negation is ‘~’.

(10) Truth table for negation
P ~p
T F
F T

The Logical Connectives 29

Negation is expressed in several ways in English, most commonly by rot
or n’t after the first auxiliary verb. For example, if p represents the proposi-
tion expressed by Moira left, then ~ p is expressed by Moira didn’t leave. If
‘Moira left’ is true, then ‘Moira didn’t leave’ is false, and if ‘Moira didn’t
leave’ is true, then ‘Moira left’ is false.

2.2.3 Disjunction

The disjunction connective corresponds to the use of the word or which is

- commonly glossed as ‘and/or’ or described as ‘inclusive disjunction’. The

symbol for disjunction is the lowercase letter v.

(11) Truth table for disjunction

pvq

ol B e I
T (e
- -

A logical disjunction is true if either or both of the combined propositions is
true.

Where two propositions joined by disjunction have some content in.
common, the sentence expressing the proposition (with the word or) is
usually abbreviated in the form of disjunction reduction, much like conjunc-
tion reduction. For example, That job will take two or three tins of paint,
depending on the weather is interpreted as “That job will take two tins of paint
or that job will take three tins of paint, depending on the weather.’

Inclusive disjunction (‘and/or’) corresponding to logical disjunction is
illustrated in (12).

(12) You can get there by train or bus
(“You can get there by train or you can get there by bus’)

This sentence is true if there is a bus link and no train link, or a train link and
no bus link, or both a bus link and a train link. On the most usual reading both
are available, although in any single journey you will choose one or the other.

The sentence in (12) can also be understood to express exclusive disjunc-
tion, commonly glossed as ‘either/or’, Sentence (12) with exclusive dis-
junction would express something like “You can get there somehow, either
by train or by bus, (but I can’t remember which)’. Exclusive disjunction is
also illustrated in (13).
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(13) The agent arrived in Berlin on the 9.25 or the 11.10.
(‘“The agent arrived in Berlin on the 9.25 or the agent arrived in Berlin
on the 11.10%).

Here one or the other of the connected sentences is true, but not both. This
sentence cannot be understood to mean that the agent arrived on both
trains.

As the truth table indicates, logical disjunction is inclusive (‘and/or’,
‘either or both’). The exclusive disjunction use of or (‘either but not both’)
can be represented by adding the qualification ‘but not both’ to logical
disjunction, for example:

(14) p = you take the money
q = you take the bag
Either you take the money or you take the bag = (pvq) & ~(p&q).

Note here that brackets are used to indicate which proposition, simple or
complex, is combined by a particular connective or combined with negation.
The disjunction pvq is itself the first part of the whole conjunction. Negation
combines with the conjunction p&q, then the whole negative proposition
~(p&q) is the second part of the whole conjunction.

2.2.4 The Material Implication Connective

Conditionality is mainly expressed by certain uses of if or if... then —
sentences with if are called conditional sentences or conditionals for short.
There are two logical connectives corresponding to conditionals, the mater-
ial implication connective and the biconditional connective, which is dis-
cussed in the next section. As we shall see, these two connectives only partly
fit the usual ways we understand if sentences.

The material implication connective is represented by the symbol ‘—’. The
proposition p in p—q is the antecedent, and q is the consequent. In a
conditional sentence the antecedent is the sentence to which if is attached,
although it may appear first or second in the whole sentence. For example, in
both sentences in (15) the antecedent is if Marcia invited John/him and the
consequent is John/he will go.

(15)a If Marcia invited John, (then) he’ll go.
b John will go if Marcia invited him.

The main point with implication is that where the antecedent is true, the
consequent must also be true. If the antecedent is true and the consequent is
false, then the whole implication is false. So the first two lines of the truth
table for implication are:
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P 4q9 p—q
T T T
T F F

The remaining lines of the truth table, where the antecedent is false, are not
so clearly related to ordinary uses of if. Where the antecedent is false the
implication is true no matter what the truth value of the consequent, as
shown in the full truth table below.

(16) Truth table for material implication

P q Ppq
T T T
T F F
F T T
F F T

Using the example in (15), the lines of the truth table give these truth
values:

(17) p = Marcia invited John
' q = John will go
p—q = If Marcia invited John, he’ll go

Line 1: Marcia did invite John and John will go: the implication is
true.

Line 2: Marcia did invite John, but actually John won’t go: the
implication is false.

Line 3: Marcia didn’t invite John, but he will go anyway: the impli-
cation is true.

Line4: Marcia didn’t invite John and John won’t go: the implication
is true.

Lines 1 and 2 give the results we would expect from the ordinary use of if.
Line 3 seems odd. If John will go (to some understood destination) whether
Marcia invited him or not, why bother to say “if Marcia invited John’ at all?
All that is communicated here is ‘John will go’. In fact, an utterance of If
Marcia invited John, he’ll go is more likely to be intended to mean ‘If Marcia
invites John he’ll go, but not otherwise’ — explicitly, ‘If Marcia invited John
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he’ll go, and if she didn’t invite him, he won’t go’. On this reading the whole
sentence on line 3 should be false. This use of if is more like the biconditional
connective, to be reviewed in Section 2.2.5.

The chief general difference between material implication and conditional
sentences is that if is commonly not simply truth-functional in actual use.
Given that material implication is truth-functional, the truth of an implica-
tion proposition depends only on a certain combination of truth values for
the contained propositions, and the actual content or subject matter of those
propositions is irrelevant. Logically, (18) expresses a perfectly fine (and true)
implication, but it is odd as a conditional sentence.

(18) If the number 1960 is divisible by 5 then 1960 was a leap year.

antecedent (1960 is divisible by 5)  true
consequent (1960 was a leap year) true
implication true

But many of us would dispute the truth of (18), because we don’t calculate
leap years by dividing by five. The problem here is that we frequently use
if ... then to express some causal relationship between the antecedent and
consequent — the antecedent describes some event or state of affairs which
causes what is described by the consequent — in other words, the consequent
describes the consequences. Sentence (18) reads most naturally as stating
that the status of 1960 as a leap year depends on the year’s number being
divisible by five, whereas in fact divisibility by four is the criterion for leap
years. For the implication to be true, it is sufficient that the antecedent and
consequent are both true. For the conditional sentence to be true as we
normally understand it, the status of 1960 as a leap year would have to
depend on, or be caused by, the fact that the number 1960 is divisible by 5.

These uses of if carry extra aspects of meaning, such as causality, but note
that they also include the truth-value combinations given by the first two
lines of the truth table. Even with the causal use of if; if the antecedent is true
the consequent must also be true. For example, If the number 1960 is divisible
by 4 then 1960 was a leap year expresses the causal connection accurately. In
addition, given that the antecedent is true, the conditional is true only if the
consequent is also true and 1960 was a leap year — if 1960 was not a leap year
the conditional is false. That is, the causal meaning associated with if is extra
content added to the meaning of logical implication.

There is a common rhetorical use of if. . . then that fits well with the logical
analysis, requiring no causal or commonsense connection between the sen-
tences, as illustrated in (19).

(19) If that’s a genuine Picasso then the moon is made of longlife food
product
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p = That’s a genuine Picasso
q = The moon is made of longlife food product.

Assume (by conversational conventions discussed in Chapter 11) that a
sentence like (19), when uttered, is taken as being true. The rhetorical device

requires that the consequent be obviously false. This gives the combination
of values:

(20)

Checking the truth table for implication, repeated here, we see that this

combination of truth values occurs only on line 4, where the antecedent is
false.

P 4 P4
T T T
T F F
F T T
F F T

So this rhetorical device is used to convey that the antecedent is false. Here,\
(19) is used to convey that that’s not a genuine Picasso. Routines of this form
include the cliché if. .. I'll eat my hat.

The extra aspects of meaning found with if; such as causality, are generally
analysed as a layer of meaning which is added to the literal meaning of if by
pragmatic processes. Sentence conjunction with and is also commonly inter-
preted with extra pragmatic content, in addition to the truth-functional
meaning of logical conjunction, which is assumed to be the core literal
meaning of and. This issue is discussed further in Chapter 11. Other kinds
of conditional are also discussed in Chapter 3.

2.2.5 Equivalence and the Biconditional Connective

The biconditional connective, represented by the symbol ‘«’ or ‘=’
expresses the relation of equivalence between propositions. Two proposi-
tions are equivalent if, in any given circumstances, they have the same truth
value, either both true or both false. Accordingly, the biconditional p—q is

true if p and q have the same truth value, and otherwise false.
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(21) Truth table for equivalence/biconditional connective

P 494 Ppeoq
T T T
T F F
F T F
F F T

The corresponding English expression is if and only if, often abbreviated in
writing to iff. Unlike and, or and if, these paraphrases are not common
English expressions, being largely confined to ‘philosopher talk’. This rela-
tion is commonly used in technical contexts, particularly in statements of
truth conditions:

(22)a “‘Snow is white’ is true if and only if snow is white.
b “Schnee ist weiss’ is true if and only if snow is white.
¢ ‘La neige est blanche’ is true if and only if snow is white.

In (22b), for example:

p = ‘Schnee ist weiss’ is true
q = snow is white

As we saw in Chapter 1, the truth set for q (the set of all possible worlds in
which q is true) is the set of all the possible and actual circumstances of snow
being white. The whole biconditional in (22b) asserts that ‘Snow is white’
and ‘“Schnee ist weiss” is true’ are either both true or both false in all
circumstances, therefore in all possible worlds. Obviously the truth set for
‘“Schnee ist weiss” is true’ is the same as the truth set for ‘Schnee ist weiss’.
In effect, the sentence ‘Schnee ist weiss’ is true in exactly the same possible
worlds as ‘Snow is white’, and therefore it has exactly the same truth set, or
intension. In short, it has the same meaning.

The truth table for equivalence also appears to be part of the meaning of if
in uses like (15), repeated here as (23a), and (23b), where the rider ‘but not
otherwise’ is understood.

(23)a If Marcia invited John he’ll go.
b If you kick me again I’ll punch you.

Take (23b):

p = you kick me again
q = I punch you
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line 1: you kick me again and I punch you true
line 2: you kick me again but I don’t punch you false
line 3: you don’t kick me but I punch you anyway false
line 4: you don’t kick me and I don’t punch you true

What is added to the equivalence relation in this use of if is the notion of
temporal sequence and causality — that is, the kicking happens before the
punching and also causes the punching, as the punching is in response to the
kicking. For example, line 1 would also apply if I punched you first and you
kicked me in response, but the sentence If you kick me again I'll punch you is
not understood in this way. As with other uses of if mentioned above, the
extra content here, in addition to the truth-functional content, is generally
considered to be pragmatic.

For review of this section, see the exercises in Part A at the end of the
chapter.

2.3 PREDICATES AND ARGUMENTS

The internal structure of the most simple kind of proposition, an atomic
proposition, consists of a predicate and its argument or arguments. We begin
with so-called two-place predicates as an illustration.

(24)a  Brigitte is taller than Danny.
b Alex is Bill’s henchman.
¢ Fiji is near New Zealand.

All of these sentences express a relationship between two entities. If we take
out the expressions which refer to entities, we are left with the part that
expresses the relationship — this part expresses the predicate.

(25)a ...is taller than...
b ...is...’s henchman.
¢ ...isnear...

In each of these sequences there is one main word which on its own indicates
the nature of the relationship, or the content of the predicate. In the notation
to be used here the symbol for the predicate is based on the main word,
omitting tense, copula be, and some prepositions. The entities bound in a
relationship by the predicate are its arguments, referred to in these examples
by names. By convention, names are represented by lowercase letters. The
formulae for the sentences in (24) are

(26) TALLER (b, d)
HENCHMAN (a, b)
NEAR (f, n)
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These examples illustrate some of the main points about logical predic-
ates.

First, predicates are semantically ‘incomplete’ if considered in isolation. It
isn’t possible to paraphrase or explain the meaning of one of these predicates
without including the notion of there being two entities involved in any
situation where the predicate applies.

Secondly, each predicate has a fixed number of arguments. These predic-
ates must have exactly two arguments to form a coherent proposition — no
more and no fewer — hence they are two-place predicates. The argument
‘slots’ are part of the predicate’s meaning.

Predicates are commonly used elliptically in natural language, with one of
the arguments not explicitly mentioned. For example, one might say simply
‘Brigitte is taller’ or ‘Alex is a faithful henchman’. But the second, unmen-
tioned argument in elliptical utterances like these is still understood in the
expressed proposition. If Danny is a subject of conversation, ‘Brigitte is
taller’ can be interpreted to mean Brigitte is taller than Danny’. In another
context, it may be interpreted to mean that Brigitte is taller than she used to
be. It isn’t possible to be taller in isolation without being taller than some
comparison standard, and it isn’t possible (in modern English) to be a
henchman without being someone’s henchman. The second argument is
still understood to be present in the proposition expressed.

The elliptical use of predicates found in natural language is not well
formed in logic, and both the arguments of a two-place predicate must be
represented in a logical formula. Although (27a,b) below can communicate
complete propositions (because we can usually understand from the context
what elements have been ellipted), (27a,c) are not well formed, and don’t
express propositions. Logical formulae themselves cannot be elliptical.

(27)a Brigitte is taller.
b Alex is a faithful henchman.
¢ TALLER(b)
d HENCHMAN(a)

The unmentioned argument is usually clearly identified from the context.
Even if no context is supplied with an example to give this information, the
argument position can be filled by a general term, for now, someone or
something, as in (28).

(28)a TALLER (b, someone)
b HENCHMAN (a, someone)

The third point about predicates is that the order of the arguments in the
formula is significant. Generally (but not always) the order of arguments in a
logical representation is taken from the order of the corresponding expres-
sions in the sentence, for example:
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(29)a Brigitte is taller than Danny.
TALLER(b, d)

b Danny is taller than Brigitte.
TALLER(, b)

The predicates we looked at in Chapter 1, such as dog, brown and barks,
are all one-place predicates. The most basic subject+predicate sentence of
traditional grammar contains a one-place predicate, with the subject of the
sentence expressing its single argument, as in (30).

(30)a Zorba was Greek. GREEK(z)
b Moby Grape is purple. = PURPLE(m)
¢ Perry is a lawyer. LAWYER(p)
d Cyrus coughed. COUGH(c)

Note that one- and two-place predicates can be expressed by a range of
lexical categories, as illustrated in (31).

(31) adjective: TALL PURPLE GREEK TALLER
preposition:. NEAR ON BESIDE
noun: LAWYER DOG CORACLE
verb: . COUGH SEE READ

Three-place predicates (and four-place predicates, if there are any) are
expressed by verbs, and perhaps by nouns derived from verbs.

Three-place predicates are commonly expressed by so-called double object
verbs, for example:

(32)a Richard gave Liz a diamond. (double object)
b Richard gave a diamond to Liz.
¢ Marcia showed Clive the ad (double object)

d Marcia showed the ad to Clive

other three-place verbs: tell, teach, send, pass, offer, etc.

Although the two sentences in each pair have different word order, they have
the same meaning. For examples like these, one word order must be chosen
as the basis for the order of arguments in the logical representation — in this
case, the order in (32b, d) is used, and the formulae are as in (33).

(33)a GIVE (1, a diamond, 1)  for (29a, b)
b SHOW (m, the ad, ¢) for (29¢, d)

Here two of the arguments are expressed by noun phrases which are not
names — a diamond and the ad. Noun phrases like these are analysed in more
detail in the next section and in Chapter 4.
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There may not be any real four-place predicates in natural language,
although in principle there is no limit on how many arguments a predicate
can have. The reason for uncertainty over four-place predicates is covered in
the next section. .

A couple of likely candidates for four-place predicates are buy and sell.

(34)a Marcia sold the car to Clive for $200.
SELL(m, the car, ¢, $200)

b Clive bought the car from Marcia for $200.
BUY(c, the car, m, $200)

2.3.1 Predicates, Verbs and the Number of Arguments

As we saw earlier, every predicate has a fixed number of arguments which
must be present in a well-formed proposition, and accordingly, a logical
form must represent all the arguments of each predicate. Natural language
allows for elliptical forms like those in (27a, b), where an argument of the
predicate need not be expressed in the sentence, although its presence in the
proposition is still understood. Other examples of ellipsis are in (35).

(35)a Will you pour out? (the tea)
b 1 gave at the office (money, to your charity)
¢ Add meat to pan and sauté lightly. (you, the meat)

On the other hand, there is a general axiom in syntactic theory that all
syntactic arguments of verbs (and possibly of other predicates) are obligat-
ory, and must be expressed in a well-formed sentence. Ellipsis is a special
exception to this general rule. This principle may be used to test whether or
not a phrase is an argument of the verb, for example:

(36)a Al put the groceries away/on the bench.
b * Al put the groceries.

The asterisk before (36b) indicates that the sentence is ill-formed. A sentence
with the verb put requires a locative phrase expressing where something is
put. Sentence (36b) lacks a locative expression and is ill-formed, in contrast
to (36a). This is generally taken as evidence that the locative expression is
obligatory with put and therefore is an argument of put. Roughly, an
expression which can be omitted without making the sentence ill-formed is
not an argument of the predicate. The converse is illustrated in (37).

(37)a We planned the weekend the other night.
b We planned the weekend.
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Of the two noun phrases the weekend and the other night, both referring to
intervals of time, only the first is an argument of plan. The second noun
phrase can be left out, and is not an argument.

The general principle that the syntactic arguments of verbs are obligatory
has a number of apparent counter-examples falling into two main groups.

The first group are elliptical sentences. A possible strategy for at least
some of these sentences is to include a sort of ‘silent pronoun’ in the syntactic
structure of the sentence to fill the argument slot. This allows the obligatory
argument principle to be maintained, as the silent pronoun counts as an
expression of the argument in question, even though it is not pronounced.
What it refers to is provided by the context, as is commonly the case with
pronouns like 4e, she, they, etc.

Counter-examples of the second kind show what is called variable adicity.
The adicity of a predicate is the number of arguments it takes, derived from
the terms monadic (= one-place), dyadic (= two-place), triadic (= three-
place), and so on. Verbs with variable adicity seem to have variable numbers
of arguments in different sentences, for example:

(38)a They showed the film to the censor on Tuesday 3
b They showed the film on Tuesday 2
¢ He served the soup to the guests first. 3
d He served the soup first. 2
¢ He served the guests first. 2
f 2
g 3
h 2
i 3

She wrote a letter.
She wrote him a letter.
She made a sandwich.

She made him a sandwich.

Discussing data like these, linguists refer informally to optional arguments,
although strictly speaking an argument is obligatory by definition. Indis-
pensability is part of what it is to be an argument.

An alternative is to maintain that all arguments are indeed obligatory, and
that the sentence groups above do not contain the same verb — for example,
the verb show in (38a), which has three arguments, is not the same as the
two-argument verb show in (38b). Although this option protects the obligat-
oriness principle, it conflicts with the common intuition that the sentence
groups do contain the same verb, and it carries the consequence that many
common verbs must be classed as highly ambiguous.

For the present purposes, phrases which appear to be so-called optional
arguments, in that they are argument-like in meaning but can be omitted,
will be analysed as arguments in logical forms.

We are uncertain about the existence of four-place predicates because
verbs like buy and sell have variable adicity.
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(3%)a Marcia sold the car to Clive for $200.
Marcia sold the car for $200.

Marcia sold the car to Clive.

Marcia sold the car.

Clive bought the car from Marcia for $200.
Clive bought the car for $200.

Clive bought the car from Marcia.

Clive bought the car.

Broe o Q0 g

With sell the buyer and the price can be omitted, and with buy the seller and
the price can be omitted, even though these entities must be present in a
buying or selling event. The meaning of sell must include the notion of
payment, otherwise it isn’t distinguishable from give. Similarly, the exchange
of payment differentiates buy from take or receive.

There is an important difference between the missing arguments in (39)
and the ellipsed arguments in (28) and (35), which is that in general, ellipsed
arguments are specifically identified from the general context. In contrast to
this, the unspecified price in (39c, g), the buyer in (39b, d) and the seller in
(39f, h) are understood to exist, but nothing else need be known about them.
This raises doubts as to whether or not the omissible phrases in (39) are
arguments at the syntactic level.

The main predicate and its arguments comprise an atomic proposition.
Ordinary natural language sentences generally contain more than this, for
example:

(40)a Seymour will slice the salami carefully in the kitchen tomorrow to
make the canapés.
b SLICE (s, the salami)

The basic logical representation introduced so far shows only the main
predicate, SLICE, and its two arguments, the slicer and the slicee. We omit
the tense marker will, the manner adverbial carefully, the locative adverbial
in the kitchen, the temporal adverbial tomorrow, and the adverbial clause of
purpose to make the canapés. Tense is covered in Chapter 7 and adverbials in
Chapter 8. Until then they will be omitted in logical forms.

2.3.2 Sentences as Arguments

All the arguments in the discussion so far have been expressed by noun
phrases, but arguments can also be expressed by sentences themselves, for
example:

(41)a Clive said something
SAY (c, something)
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b Clive said [that he gave the car to Marcia]
SAY (c, (GIVE (c, the car, m))

¢ Clive thinks [the earth is flat]
THINK (c, (FLAT (the earth))

In (41b, ¢) the proposition expressed by the embedded sentence is the second
argument of the main verb — the proposition is what is said or what is
believed. (Sentences about thinking and believing are discussed in Section
5.5.)

The clearest examples of sentential arguments are found with verbs, but
plausibly members of other word classes can also have sentential arguments.

(42)a Shirley was proud [of the new car]
b Shirley was proud [that she graduated]
¢ Shirley was proud [to be Miss Lada 1993]

In (42a) it seems that the new car, the source of Shirley’s pride, is the second
argument of proud. In (42b, c) the embedded sentence also expresses the
source of pride, the second argument of proud, and so the propositions can
be represented as in (43).

(43)a  PROUD (s, the new car)
b PROUD (s, (GRADUATE())
¢ PROUD (s, (MISS LADA 1993(s))

A sentential argument may also be the only argument of the main predicate
in a sentence, for example:

(44)a [That Clive drove the car] is obvious

b It is obvious [that Clive drove the car]

¢ OBVIOUS (DRIVE (c, the car))

For a review of this section, see the exercises in Part B at the end of the

chapter.
2.4 THE LOGICAL QUANTIFIERS
2.4.1 The Universal Quantifier
The atomic propositions we have discussed so far have had individual argu-

ments, referred to by names or noun phrases like the dog, with logical forms
like these:

\
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(45)a John saw Mary SEE (j,m)
b Fido was barking BARK (f)
¢ The dog was barking BARK (the dog)

Propositions with quantified arguments rather than individual arguments
(that is, quantified propositions) must be treated differently. Take the ex-
ample below.

(46) God made everything.

The chief point here is that God and everything have very different kinds of
meaning. While God is a name referring to an individual, everything doesn’t
refer to a thing, but rather has the potential to refer to any thing considered
individually. Suppose it were possible to point to each thing in existence in
turn and say ‘God made that’. According to (46) each utterance would be
true, and (46) can be analysed as a sort of summary of all those propositions
about different individuals.

Pronouns like that, this and it are referring expressions which can in
principle refer to any individual depending on the circumstances in which
they are used — they have variable reference, in contrast to names, which have
constant reference. The logical terms used to translate names are individual
constants. To analyse quantified propositions we nheed individual variables,
comparable to pronouns. Individual variables are traditionally written as x,
y and z, with », v and w added if needed. Like this and that, individual
variables can in principle refer to any individual at all, depending on the
context. With an individual variable the logical form for God made that can
be written as

(47) MAKE (g, x)

As it stands, (47) does not fix the reference for x and so doesn’t express a
proposition, as it cannot be true or false.

The universal quantifier, written as v’, fixes how the variable is to be
interpreted. The whole logical form for God made everything is (48).

(48) Vx (MAKE (g, x))

The quantifier is paired with a copy of the variable which is its target, and
the formula with which the quantifier combines is bracketed to fix the scope
of the quantifier. (48) can be read as (49).

(49) For any value of x, God made x
For all values of x, God made x
Whatever x may be, God made x
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Here the universal quantifier fixes the value of x as every thing, taken
individually. The quantifier binds the variable, which is accordingly a bound
variable in the whole formula ‘Vx(MAKE (g, x))’. A variable which is not
bound by a quantifier is a free variable. The x variable is free in the basic
formula ‘MAKE (g, x)’. A proposition form with a free variable, such as
‘MAKE (g, x)’, stands for an open proposition. An open proposition by itself
is incomplete and cannot have a truth value. A formula with no free variables
stands for a closed propesition, which is complete and has a truth value.
Because there are no free variables in (48) it stands for a closed proposition.

Noun phrases expressing universal quantification are usually more com-
plex than everything, as in (50).

(50)a Now is the time for all good men to come to the aid of the party.
b Every cloud has a silver lining.
¢ Every dog is barking.

Take the significance of dog in (50c). Suppose ‘Every dog is barking’ is true.
Now you point to each thing in turn and say ‘that is barking’. This time the
utterance will be false on many pointings, but for any pointing to a dog it
will be true. In other words, if the thing pointed to is a dog then ‘that is
barking’ is true. So for ‘Every dog is barking’, the pointing exercise goes with
the utterance of ‘If that is a dog then it is barking’, and the logical form for
(50c) is (51), using the implication connective.

(51)  vx(DOG(x) — BARK(x))
‘For every thing x, if x is a dog then x is barking’

The logical universal quantifier does not express existential commitment —
that is, a sentence like Every dog is barking can be true on the logical analysis
even when there are no dogs.

On the logical analysis, if there are no dogs ‘Every dog is barking’ is true,
because the antecedent ‘DOG(x)’ will be false for any value of x. If there are
no dogs, only lines 3 and 4 of the truth table for implication will come into
play.

(52)

DOG (x) BARK (x) 'DOG (x) — BARK (x)

DWW -
T
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On the logical analysis ‘Every dog is barking’ is equivalent to ‘There is no
non-barking dog’.
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A universally quantified noun phrase in object position or other sentence
positions is analysed in the same way, for example:

(53)a Bill hates all reporters.
Vx(REPORTER(x) — HATE(b, x))
‘For all x, if x is a reporter then Bill hates x’.

b Clive gave a bone to every dog.
Vx (DOG(x) — GIVE(c, a bone, x))
‘For all x, if x is a dog then Clive gave a bone to x’.

¢ The book was signed by every guest.
Vx (GUEST(x) — SIGN(X, the book))
‘For all x, if x is a guest then x signed the book’.

The expressions a bone and the book are not fully analysed here, but the way
we represent NPs like these will be revised.

2.4.2 The Existential Quantifier

The other logical quantifier, the existential quantifier, is written as ‘F
and used to translate noun phrases with a/an or some and for there is
sentences. The sequence ‘Ix’ is read as ‘there is an x’ or ‘there is at least
one thing x’.

Unlike the universal quantifier, the existential quantifier does explicitly
express existential commitment. An existential sentence states the existence
of at least one thing of the kind specified, for example:

(54)a A dog barked.
‘There is at least one thing x such that x is a dog and x barked’.
Ix (DOG(x) & BARK(x))

b There is an antidote to Huntsman venom.
3x (ANTIDOTE(x, h))

¢ Some birds were singing.
3x (BIRD(x) & SING(x))
d A black limousine awaited Marla.
3Ix (LIMOUSINE(x) & BLACK(x) & AWAIT(x, m))

e Louise bought some trashy paperbacks.
Ix (TRASHY(x) & PAPERBACK (x) & BUY(}, x))

As these examples show, the existential quantifier is neutral between
singular and plural. Note that unlike the universal quantifier, the existential
quantifier is not analysed with ‘—’.
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The determiner no is analysed with the existential quantifier and negation,
as in (55).

(55)a There is no antidote to cyanide.

~ 3x (ANTIDOTEC(, ¢))
‘It is not the case that there is an x such that x is an antidote to
cyanide’.
For short, ‘there is no x such that...’

b Clive ate nothing.
~ 3x (EAT(c, x))
‘There is no x such that Clive ate x.’

In sentences like (55) the negation cancels the existential quantifier’s
guarantee of the existence of a thing of the kind described. To affect the
interpretation of the existential quantifier in this way, the negation must
appear before the quantifier. Reversing the order of the existential quantifier
and negation gives a different meaning, as in (56).

(56) 3x ~ (EAT(c, x))
“There is at least one thing x such that Clive didn’t eat x.’

As we saw above, ‘Every dog is barking’ is equivalent to ‘There is no non-
barking dog’. For any universally quantified proposition there is an equival-
ent existentially quantified proposition, and vice versa, as shown in (57) and
(58). (57a) is equivalent to (57b), and (58a) is equivalent to (58b).

(57)a Vx (DOG(x) — BARK(x))
‘For every x, if x is a dog then x is barking.’
b ~ 3x (DOG(x) & ~BARK(x))
‘There is no x such that x is a dog and x is not barking’.
(58)a 3Ix (DOG(x) & BARK(x))
‘There is an x such that x is a dog and x is barking.’
b ~ Vx (DOG(x) —~ BARK(x))
‘It is not the case that for all x, if x is a dog then x is not barking’

2.4.3 Scopal Ambiguity

The examples above show that the relative order of negation and a quantifier
is significant. This was first mentioned with (55b) and (56), repeated in (59).

(59)a ~ 3x (EAT(c, x))
‘Clive ate nothing’.
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b 3x ~ (EAT(c, x))
“There is at least one thing Clive didn’t eat.’

These examples illustrate a more general point. The internal structure of a
simple proposition always contains at least the predicate and its arguments.
With quantifiers and negation, we add to the logical forms symbols which
combine with a propositional form as a whole. This is represented by placing
the symbols for negation and quantification at the beginning of the proposi-
tional form. Expressions like negation and quantification are scopal expres-
sions. The interpretation of a scopal expression is combined with, or affects,
the interpretation of the whole proposition it combines with, which is its
scope. This is illustrated in (60) and (61).

(60) ~ 3x (EAT (c, X))

~ 3Ix (EAT (c, x))
Ix EAT (c, x)

In (60) we say the quantifier is in the scope of negation, or the quantifier has
narrow scope with respect to negation, or negation takes scope over the
quantifier.

(61) Ix ~ (EAT (c, x))
Ix _ ~ (EAT (C,‘ X))
~ EAT (c, x)

In (61) we say the quantifier has wide scope with respect to negation, or
negation has narrow scope.

The representations in (60) and (61) are for the propositions expressed
by the sentences Clive ate nothing and There is something Clive didn’t
eat, respectively. From the form of the sentences, it is clear which
meaning is expressed, and which order is required for negation and the
quantifier.

A sentence with two or more scopal expressions doesn’t always have a
clearly identified single meaning, and is commonly ambiguous between the
readings for the different possible scopes — this is called scopal ambiguity.
Scopal ambiguity with two quantifiers is illustrated in (62).

(62) Everyone loves someone.
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The subject everyone is represented with a universal quantifier, and the
object someone with an existential quantifier. There are two possible orders
for the quantifiers, with different readings, as shown in (63).

(63)a vx3y (LOVE (x, y))

vx 3y (LOVE (x, y))

Jy LOVE (x, y)
‘For every person x, there is at least one person y such that x loves y.’

b Vvy3x (LOVE (x,Y))

Jy Vx (LOVE (x, y))
E) LOVE (x,y)
‘There is at least one person y such that everyone loves y.’

Both of these logical forms represent possible readings of the English
sentence, which is ambiguous, depending on which scope is assigned to the
scopal expressions, the quantifiers everyone and someone. A sentence can be
ambiguous, but a logical form represents a particular meaning and cannot

be ambiguous. An ambiguous sentence is associated with two (or more) .
logical forms.

EXERCISES

SECTION I: THE LOGICAL CONNECTIVES
(A) Basic Review

Assuming that p is true, q is false and r is true, calculate the truth values for
the following formulae. Here is an example: ~ (p&q) v (r—q)

~p & q) v (r > q)
T F T F
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el /
\ )




48 First Order Logic

1M P& —q

@ (@v(gvr) — (p &(qv)

(3) (p&r) & (~rv~q)

@ (9 & (p&n)

5) q— ((vp) < (t&p))

6 ((peq e Teq)vrr

7N r1-((~q&p)v({q—r1)Vv~(=p)

®) ((v@) « (@ — (q&r) vp))) —~r

®) (t&~q) — (pv~1)) < ((tv~1) & (p—~q)
10) (~r—p) & (P —~q9) & (q=~p) & (r — Q)

(B) Truth Tables

Construct the truth table for ~(pvq) < (~p&~q).
What can you conclude from this about ~ (pvq) and ~ p& ~q ?

(C) Truth Tables

Construct the truth tables for ~p v q and ~q —~p.
There is a formula with only three symbols which is equivalent to both of
these — what is it? :

(D) Conditionals and Implications

According to the truth table for implication, what are the truth values for the
sentences below? Do these truth values fit with your normal intuitions about
these sentences?

(1) If Baltimore is in Singapore then Elvis is dead.

(2) If Baltimore is in Singapore then Elvis is alive.

(3) If Ireland is surrounded by sea then it is an island.

(4) If Ireland is connected to Wales then it is an island.

(5) If Cain killed Abel then Abel is dead. -

(6) If Abel isn’t dead then Cain didn’t kill him.

(7) If humans walk upright then they can use their hands to carry things.
(8) If humans can’t use their hands to carry things then they don’t walk

upright.
(E) Truth Tables

(1) The formula
(~q & ~1) & (r v (p&qQ)
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@

is true on only one combination of truth values for p, q and r. What are
the values for p, q and r on which the formula is true? (Construct the
truth table for the formula to find this out.)

There is a simple formula which just says that the truth values for p, q
and r are the values you found as the answer to (1). Can you write this
formula? What is the relationship between this formula and the for-
mula in (1)?

SECTION II: PREDICATES AND ARGUMENTS

®

Basic Review

Give the logical forms for the following sentences.

(D
@
€)
4
()
(6)
™

®

€

(10)
1n
(12)
(13)
(14
(1)
(16)
a7
(18)
(19)
(20)

(&)

John gave ten dollars to Mary.

Mary was given ten dollars by John.

Toby was under the table.

Clive showed Maddy the photos.

China is east of Europe.

Sheila is a surgeon. :
Max, Clyde and Damien partnered Latoya, Gina and Britt
respectively.

Jerry is Ben’s brother.

Paul is the brother of Sheila.

Jerry and Ben are brothers.

Clive and Marcia embraced.

Bill was painting in the kitchen.

Bill was painting the kitchen.

Mary finally bought the painting yesterday.
John sat in the chair.

John sat in the hall.

Jason picked at his food.

Clyde told Tom that Bill had left.

‘Bill has left’, Clyde told Tom.

‘Ouch!’ said Sarah.

Adding Connectives

Give the logical forms for the following sentences. Some of the sentences are
ambiguous. For each ambiguous sentence give two logical forms showing
the different readings.

Example: Dorothy saw Bill or Alan.

SEE (d, b) vSEE (d, a)
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(1)  Either Sydney or Canberra is the capital of Australia.

(2) Audrey went to Motueka and visited Rangi or interviewed Cameron.
(3)  Alice didn’t laugh and Bill didn’t either.

(4)  Alice didn’t laugh and nor did Bill.

(5) Neither Bill nor Alice laughed.

(6) Frank is not both rich and generous.

(7) If Adam trusts Eve he’s stupid.

(8)  Sue will be rich if Lenny dies.

(9) If David is Audrey’s brother then Fanny’s his aunt or Bob’s his uncle.
(10) Claire will hire Burt and Ethel will resign if Lenny leaves Taiwan.

(H) Only if: Discussion

Compare the uses of only if in the sentences below. Does only if have a
constant meaning? Write the logical forms for the sentences.

(1) Combustion occurs only if oxygen is present.
(2) Bill will leave only if Mary resigns.

(3) Bill will leave only if Mary doesn’t resign.
(49) Mary will resign only if Bill leaves.

SECTION III: THE LOGICAL QUANTIFIERS
(I) Basic Review

Using V and 3 where appropriate, write logical forms for the sentences
below.

(1) A young woman arrived.

(2) 1da saw something sinister.

(3) All roads lead to Rome.

(4) Utopia welcomes all travellers from Spain.
(5) There’s a castle in Edinburgh.

(6) Someone murdered Clive.

(7)  Clive got murdered.

(8)  The boat got sunk.

(9) The boat sank.

(10) Nobody saw Charles.

(11) Maxine sent every letter John had written her to Ruth.
(12) Gina or Boris fed every puppy.

(J) Negation

Using V and 3, write logical forms for the sentences below. If the sentence is
ambiguous, give a form for each reading.
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(1) Everyone doesn’t like Bob.
(2) Not everyone likes Bob.
(3) Bob doesn’t like everyone.
(4) Bob doesn’t like anyone.

(X) Adding Connectives

Using V and 3, write logical forms for the sentences below. Note that (6) is
ambiguous so there are two forms for it.

(1) Grammar A generates all and only well-formed formulae.

(2) Clive gave every child a biscuit or a Batman comic.

(3) Zoe read all the death notices but nothing else.

(4) There’s no business like show business. (Treat show business as a name.)
(5) Chairman Miaou is heavier and meaner than any spaniel.

(6) Every prize was won by some high school kid.

FURTHER READING

Allwood, Andersson and Dahl’s (1977) Logic in Linguistics is an accessible
introduction to first order logic and is particularly recommended.




